A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modulation of irrigation-induced microbial nitrogen‑iron redox to per- and polyfluoroalkyl substances' water-soil interface release in paddy fields: Activation or immobilization? | LitMetric

Modulation of irrigation-induced microbial nitrogen‑iron redox to per- and polyfluoroalkyl substances' water-soil interface release in paddy fields: Activation or immobilization?

Sci Total Environ

Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:

Published: December 2024

Understanding the modulation of paddy field irrigation to the migration of per- and polyfluoroalkyl substances (PFAS) at the water-soil interface is pivotal for the management of PFAS pollution in paddy soil and surrounding surface water environments. In flooded soils, soil organic matter was transformed into aromatic protein-like dissolved organic matter (DOM). Meanwhile, Na, K, and Mg were translocated into extracellular polymeric substances (EPS) under the catalysis of cation channel enzymes (p < 0.05), provided ion bridging for the binding of DOM and PFAS, and accelerated the accumulation of C4-C9 PFAS in overlying water (41.79-99.14 %). Short-chain PFAS's accumulation in soil solution of drought soils was stimulated by microorganisms secreting soluble microbial by-product-like DOM (53.15-97.96 %). Furthermore, PFAS's distribution in flood soils was dominated by bacterial denitrification and iron-reduction, whereas iron-oxidation and ammoxidation controlled that in drought soils. The transformation of organic carbon including CO and COC caused by irrigation-induced redox modulated PFAS cross-media translocation. Iron‑nitrogen redox in flooded paddy soils immobilized the PFAS's migration into overlying water (p < 0.05). Our findings have profound implications for PFAS's pollution control, surface water environmental protection, and rice production security in paddy fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.177377DOI Listing

Publication Analysis

Top Keywords

per- polyfluoroalkyl
8
water-soil interface
8
organic matter
8
modulation irrigation-induced
4
irrigation-induced microbial
4
microbial nitrogen‑iron
4
nitrogen‑iron redox
4
redox per-
4
polyfluoroalkyl substances'
4
substances' water-soil
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!