Ultramafic soils are a natural source of metals such as Ni, Co and Cr that can pose ecosystem and human risks. Here, we assessed the environmental, ecological, and human health (carcinogenic and non-carcinogenic) risks from exposure to ultramafic soils through an integrated approach using petrographic and soil mineralogical assessments together with total, available, bioaccessible, and soil fractions analyses of Ni, Co and Cr in ultramafic soils from Brazil. The metal concentrations were similar or up to 5-fold higher for Ni than other studies worldwide in ultramafic soils. Soil sequential extraction showed Co and Ni predominantly bound to Fe and Mn oxides, while Cr was mostly in residual fractions. Medium environmental risks were found for Ni (RAC = 13.0), but no environmental risks were associated with Co and Cr in soils. Ecological risks were high (PERI = 522.8) and significantly high (PERI = 1759.9). Low metal bioaccessibility led to acceptable carcinogenic and non-carcinogenic risks for all routes of human exposure to soil, but consuming vegetables grown in these soils posed unacceptable cancer risks (> 10). Our results reinforce the need to monitor ultramafic areas regarding the mobility and availability of metals in the soil to ensure food safety and human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177343 | DOI Listing |
Environ Res
December 2024
Vale Institute of Technology, Rua Boaventura da Silva 955, Nazaré 66055-090 Belém, Pará, Brazil.
Understanding geochemical source-sink relationships is an important aspect for developing background values of potentially toxic elements (PTEs) in a lake basin. This approach was studied in the Araguaia belt of Amazonia, Brazil. A total of 96 sediments (from 13 lake cores LA1-LA13), 36 surface soils, and 19 catchment rocks were collected in 2022 and chemical analysis of these samples was performed in the fine fraction (< 177 μm) using XRF and ICP-MS.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Biological, Geological and Environmental Sciences - BiGeA, Alma Mater Studiorum University of Bologna, Via Zamboni 67, 40126 Bologna, Italy.
This study investigates the impact of intense rainfall on chromium concentrations in five springs discharging from ultramafic rocks in the Northern Apennines (Italy), which are used for drinking water supply through integration into the local water network. Total chromium concentration increased significantly in response to heavy rain, exceeding the WHO drinking water guideline value (up to 80 μg/L) in one spring and the forthcoming 2036 EU target of 25 μg/L in all the springs. This increase could be attributed to a synergistic combination of factors: i) the reduction of Cr(VI) to Cr(III) by natural organic matter (NOM) in soil and transport as NOM-Cr(III) colloids and/or during the oxidation of magnetite to ferrihydrite in the aquifer; ii) the abundance of detrital ultramafic material in the study area, which may store Cr(III)-bearing colloids too; iii) a triggering effect of first intense rainfall after a 20 dry consecutive days period (wet-dry cycle).
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Agronomy, Federal Rural University of Pernambuco, Recife, Brazil. Electronic address:
Ultramafic soils are a natural source of metals such as Ni, Co and Cr that can pose ecosystem and human risks. Here, we assessed the environmental, ecological, and human health (carcinogenic and non-carcinogenic) risks from exposure to ultramafic soils through an integrated approach using petrographic and soil mineralogical assessments together with total, available, bioaccessible, and soil fractions analyses of Ni, Co and Cr in ultramafic soils from Brazil. The metal concentrations were similar or up to 5-fold higher for Ni than other studies worldwide in ultramafic soils.
View Article and Find Full Text PDFEnviron Monit Assess
October 2024
Hellenic Survey of Geology and Mineral Exploration, 1 Sp. Louis Str., 13677, Acharnae, Greece.
The occurrence of Potentially Toxic Elements (PTEs) and other chemical elements in urban and peri-urban soils impacts human health and quality of life, posing a challenge for geoscientists. This study investigated the soil geochemistry of Lamia City, focusing on identifying the geogenic and anthropogenic origins of elements. A total of 168 topsoil samples (0-10 cm) were collected in April 2023, and the analysis included the near-total concentrations of 51 elements.
View Article and Find Full Text PDFEnviron Monit Assess
July 2024
Department of Experimental Petrology, Faculty of Earth Sciences and Environmental Management, Institute of Geological Sciences, University of Wrocław, Maxa Borna Str. 9, 50-204, Wrocław, Poland.
Ultramafic soils are characterized by low productivity due to the deficiency of macroelements and high content of Ni, Cr, and Co. Incorporation of ultramafic soils for agricultural and food production involves the use of fertilizers. Therefore, this study aims to find the soil additive that decreases the metallic elements uptake by plant using Brassica napus as an example.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!