Many specialized herbivorous insects sequester single classes of toxic secondary metabolites from their host plants as protection against natural enemies. If and how herbivores can use multiple classes of plant toxins across the large chemical diversity of plants for self-protection is unknown. We show that the polyphagous adults of the beetle Diabrotica virgifera are capable of selectively accumulating benzoxazinoids, cucurbitacins, and glucosinolates but not cyanogenic glycosides. Female beetles transfer the sequestered defense metabolites into their eggs, protecting them against generalist predators. Eggs containing a mixture of toxins are better protected than eggs with individual toxins. This work shows how herbivores can exploit plant chemical diversity to their own benefit as a novel adaptive mechanism that contributes to the structuring of multitrophic interaction networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2024.10.005 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry, Chemical Theory Center, University of Minnesota, Minneapolis, MN 55455-0431.
Multiconfiguration pair-density functional theory (MC-PDFT) was proposed a decade ago, but it is still in the early stage of density functional development. MC-PDFT uses functionals that are called on-top functionals; they depend on the density and the on-top pair density. Most MC-PDFT calculations to date have been unoptimized translations of generalized gradient approximations (GGAs) of Kohn-Sham density functional theory (KS-DFT).
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.
Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.
View Article and Find Full Text PDFPLoS One
January 2025
Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
In this comprehensive analysis of Chile's air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10).
View Article and Find Full Text PDFJ Org Chem
January 2025
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
Pd-catalyzed C4-selective alkynylation of indoles was established by employing glycine as a transient directing group. This reaction exhibits high regioselectivity with the tolerance of a wide scope of functional groups to afford diverse alkynylated indoles in moderate to good yields. Moreover, the readily accessible scale-up synthesis and further decorations to achieve multifunctionalized indoles demonstrate the synthetic potential of this protocol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!