Background: Diagnosing erythema migrans (EM) skin lesion, the most common early symptom of Lyme disease, using deep learning techniques can be effective to prevent long-term complications. Existing works on deep learning based EM recognition only utilizes lesion image due to the lack of a dataset of Lyme disease related images with associated patient data. Doctors rely on patient information about the background of the skin lesion to confirm their diagnosis. To assist deep learning model with a probability score calculated from patient data, this study elicited opinions from fifteen expert doctors. To the best of our knowledge, this is the first expert elicitation work to calculate Lyme disease probability from patient data.

Methods: For the elicitation process, a questionnaire with questions and possible answers related to EM was prepared. Doctors provided relative weights to different answers to the questions. We converted doctors' evaluations to probability scores using Gaussian mixture based density estimation. We exploited formal concept analysis and decision tree for elicited model validation and explanation. We also proposed an algorithm for combining independent probability estimates from multiple modalities, such as merging the EM probability score from a deep learning image classifier with the elicited score from patient data.

Results: We successfully elicited opinions from fifteen expert doctors to create a model for obtaining EM probability scores from patient data.

Conclusions: The elicited probability score and the proposed algorithm can be utilized to make image based deep learning Lyme disease pre-scanners robust. The proposed elicitation and validation process is easy for doctors to follow and can help address related medical diagnosis problems where it is challenging to collect patient data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijmedinf.2024.105682DOI Listing

Publication Analysis

Top Keywords

deep learning
24
lyme disease
20
patient data
16
probability score
12
learning based
8
patient
8
skin lesion
8
elicited opinions
8
opinions fifteen
8
fifteen expert
8

Similar Publications

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Development and Validation of KCPREDICT: A Deep Learning Model for Early Detection of Coronary Artery Lesions in Kawasaki Disease Patients.

Pediatr Cardiol

January 2025

Department of Infectious Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No. 1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China.

Kawasaki disease (KD) is a febrile vasculitis disorder, with coronary artery lesions (CALs) being the most severe complication. Early detection of CALs is challenging due to limitations in echocardiographic equipment (UCG). This study aimed to develop and validate an artificial intelligence algorithm to distinguish CALs in KD patients and support diagnostic decision-making at admission.

View Article and Find Full Text PDF

Machine learning-based assessment of morphometric abnormalities distinguishes bipolar disorder and major depressive disorder.

Neuroradiology

January 2025

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.

Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.

View Article and Find Full Text PDF

The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.

View Article and Find Full Text PDF

Purpose: The aim of the work is to develop a cascaded diffusion-based super-resolution model for low-resolution (LR) MR tagging acquisitions, which is integrated with parallel imaging to achieve highly accelerated MR tagging while enhancing the tag grid quality of low-resolution images.

Methods: We introduced TagGen, a diffusion-based conditional generative model that uses low-resolution MR tagging images as guidance to generate corresponding high-resolution tagging images. The model was developed on 50 patients with long-axis-view, high-resolution tagging acquisitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!