Unravelling the processes involved in biodegradation of chlorinated organic pollutant: From microbial community to isolated organohalide degraders.

Water Res

Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China. Electronic address:

Published: January 2025

Hundreds of studies have demonstrated the bioremediation of chlorinated organic pollutants (COPs) in flooded environments. However, the role of specific functional strains in degrading COPs under complex media such as wetlands is still unclear. Here, we focused on the microbial characteristics of COP-polluted sediments, identified the bacteria responsible for degradation and conducted a genomic analysis of these bacteria. Four strains were obtained and identified as Petrimonas sulfuriphila PET, Robertmurraya sp. CYTO, Hungatella sp. CloS1 and Enterococcus avium PseS3, respectively. They were capable of degrading a typical COP, γ-hexachlorocyclohexane (γ-HCH). The residual γ-HCH concentrations were 58.8 % (PET), 45.6 % (CYTO), 60.2 % (CloS1), and 69.3 % (PseS3) of its initial value, respectively. Strain PET, CYTO and CloS1 could degrade γ-HCH to its dehalogenation product chlorobenzene. Each strain harbors genes annotated to the pathway of halogenated organic matter degradation (e.g. 2-haloacid dehalogenase) and cobalamin biosynthesis, which are involved in the degradation of COPs. Comparative genomic analysis of the four strains and other classical organohalide-respiring bacteria (e.g. Dehalococcoides mccartyi and Sulfurospirillum multivorans DSM 12446) showed that they share orthologous clusters related to the cobalamin biosynthetic process (GO:0009236). VB was also detected in the culture systems of the four strains, further highlighting the importance of cobalamin in COPs degradation. In the genome of the four strains, some genes were annotated to the halogenated organic matter degradation and cobalamin biosynthesis pathway within horizontal gene transfer (HGT) regions. This further indicated that microorganisms carrying these genes can adapt faster to pollution stress through HGT. Together, these findings revealed the co-evolution mechanism of functional strains and may provide novel insights into improved bioremediation strategies for COP-polluted complex media based on generalist organochlorine-degrading bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122730DOI Listing

Publication Analysis

Top Keywords

chlorinated organic
8
functional strains
8
complex media
8
genomic analysis
8
genes annotated
8
halogenated organic
8
organic matter
8
matter degradation
8
cobalamin biosynthesis
8
strains
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!