During sterile inflammation, tissue damage induces excessive activation and infiltration of neutrophils into tissues, where they critically contribute to organ dysfunction. Tight regulation of neutrophil migration and their effector functions is crucial to prevent overshooting immune responses. Neutrophils utilize more glutamine, the most abundant free α-amino acid in the human blood, than other leukocytes. However, under inflammatory conditions, the body's requirements exceed its ability to produce sufficient amounts of glutamine. This study investigates the impact of glutamine on neutrophil recruitment and their key effector functions. Glutamine treatment effectively reduced neutrophil activation by modulating β2-integrin activity and chemotaxis in vitro. In a murine in vivo model of sterile inflammation induced by renal ischemia-reperfusion injury, glutamine administration significantly attenuated neutrophil recruitment into injured kidneys. Transcriptomic analysis revealed, glutamine induces transcriptomic reprogramming in murine neutrophils, thus improving mitochondrial functionality and glutathione metabolism. Further, glutamine influenced key neutrophil effector functions, leading to decreased production of reactive oxygen species and formation of neutrophil extracellular traps. Mechanistically, we used a transglutaminase 2 inhibitor to identify transglutaminase 2 as a downstream mediator of glutamine effects on neutrophils. In conclusion, our findings suggest that glutamine diminishes activation and recruitment of neutrophils and thus identify glutamine as a potent means to curb overshooting neutrophil responses during sterile inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jleuko/qiae243DOI Listing

Publication Analysis

Top Keywords

effector functions
16
sterile inflammation
16
neutrophil recruitment
12
glutamine
11
neutrophil
8
neutrophils
5
glutamine modulates
4
modulates neutrophil
4
recruitment
4
effector
4

Similar Publications

Background: TREM2 signaling has been implicated in Alzheimer's Disease (AD). TREM2 regulates microglial states and functions such as phagocytosis. The most prominent TREM signaling adapter is DAP12, encoded by TYROBP.

View Article and Find Full Text PDF

Dendritic cell immunometabolism - a potential therapeutic target for allergic diseases.

Int J Med Sci

January 2025

Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University. Dongguan, Guangdong 523808, China.

Allergic diseases are a group of chronic inflammatory disorders driven by abnormal immune responses. Dendritic cells (DCs) play a pivotal role in the initiation and progression of allergic diseases by modulating T cell responses. Extensive progress has been made in characterizing crucial roles of metabolic reprogramming in the regulation of immune cell functions.

View Article and Find Full Text PDF

The development and maintenance of immunity against visceral leishmaniasis.

Front Immunol

January 2025

Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.

Understanding the development and maintenance of immunological memory is important for efforts to eliminate parasitic diseases like leishmaniasis. Leishmaniasis encompasses a range of pathologies, resulting from infection with protozoan parasites belonging to the subgenera and of the genus A striking feature of these infections is that natural or drug-mediated cure of infection generally confers life-long protection against disease. The generation of protective T cell responses are necessary to control infections.

View Article and Find Full Text PDF

Previous studies revealed that tumor-associated macrophages/microglia (TAMs) promoted glioma invasiveness during tumor progression and after radiotherapy. However, the communication of TAMs with tumor cells remains unclear. This study aimed to examine the role of small extracellular vesicles (sEVs) derived from TAMs in TAMs-mediated brain tumor invasion.

View Article and Find Full Text PDF

Identifying the role of cellulase gene upon the infection of subsp. in citrus.

Mol Breed

January 2025

Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China.

Unlabelled: Citrus canker is a devastating disease caused by subsp. (), which secretes the effector PthA4 into host plants to trigger transcription of the susceptibility gene , resulting in pustule formation. However, the molecular mechanism underlying CsLOB1-mediated susceptibility to remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!