A Polyphenol Decorated Hybrid Biomaterial: Structure-Function, Release Profiles, Sorption, and Antipathogenic Effects.

ACS Appl Bio Mater

Department of Chemistry, University of Saskatchewan, 110 Science Place, Thorvaldson Building, Saskatoon, Saskatchewan S7N 5C9, Canada.

Published: November 2024

Herein, nonwoven alkali modified flax substrates were coated with incremental levels of chitosan, followed by immobilization of tannic acid, via a facile "dip-coating" strategy to yield a unique hierarchal "triplex" hybrid biomaterial, denoted as "THB". The characterization of the physicochemical properties of THB employed complementary spectroscopic (IR, Raman, and NMR) techniques, which support the role of hydrogen bonding and electrostatic interactions between the components: chitosan as the secondary biopolymer coating and the tertiary adsorbed polyphenols. XRD and SEM techniques provide further structural insight that confirms the unique semicrystalline nature and porous hierarchal structure of the biocomposite. The THBs present a polyphenol kinetic release profile that follows the Korsmeyer-Peppas model that concurs with Fickian diffusion for heterogeneous polymer systems. Furthermore, these systems demonstrate a tailored solvent uptake capacity (up to 4 g/g) in aqueous PBS media. Antipathogenic activity tests revealed 95% elimination of pathogens (, , and ) at a dose of 50 mg for the THB system. The trend in the structure-property relationships for the THB systems indicates synergistic effects of electrostatic multiform interactions between protonated chitosan and the polyphenol units. Herein, we report of a unique hierarchal biomaterial via a facile design strategy for diversiform roles as responsive adsorbents for environmental remediation to biomedical applications (e.g., controlled release, topical administration, or antimicrobial surface coatings).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.4c01044DOI Listing

Publication Analysis

Top Keywords

hybrid biomaterial
8
unique hierarchal
8
polyphenol decorated
4
decorated hybrid
4
biomaterial structure-function
4
structure-function release
4
release profiles
4
profiles sorption
4
sorption antipathogenic
4
antipathogenic effects
4

Similar Publications

Metal-protein hybrid materials represent a novel class of functional materials that exhibit exceptional physicochemical properties and tunable structures, rendering them remarkable applications in diverse fields, including materials engineering, biocatalysis, biosensing, and biomedicine. The design and development of multifunctional and biocompatible metal-protein hybrid materials have been the subject of extensive research and a key aspiration for practical applications in clinical settings. This review provides a comprehensive analysis of the design strategies, intrinsic properties, and biomedical applications of these hybrid materials, with a specific emphasis on their potential in cancer therapy, drug and vaccine delivery, antibacterial treatments, and tissue regeneration.

View Article and Find Full Text PDF

Water pollution is a critical environmental issue affecting ecosystems and human health worldwide. Contaminants such as heavy metals, dyes, antibiotics, and microplastics enter water bodies from the disposals of industrial, agricultural, and domestic waste. The development of new and advanced technologies for addressing water remediation has turned out to be a dire need.

View Article and Find Full Text PDF

Biofilm attachment and mineralizing potential of contemporary restorative materials.

Am J Dent

December 2024

Department of Restorative Sciences, Division of Operative Dentistry and Biomaterials, University of North Carolina, Adams School of Dentistry, Chapel Hill, North Carolina, USA,

Purpose: To evaluate and compare: (1) the effect of the bacterial biofilm on the dentin mineral density at the restoration-tooth interface and (2) the mineralization potential of three resin-based restorative materials (RBRM).

Methods: 16 extracted human molars free of caries and cracks were collected and stored for disinfection. Each tooth received two standardized Class II preparations with the cervical margin placed in dentin.

View Article and Find Full Text PDF

mRNA-based vaccines against the COVID-19 pandemic have propelled the use of nucleic acids for drug delivery. Conventional lipid-based carriers, such as liposomes and nanolipogels, effectively encapsulate and deliver RNA but are hindered by issues such as premature burst release and immunogenicity. To address these challenges, cell membrane-coated nanoparticles offer a promising alternative.

View Article and Find Full Text PDF

Bioengineering chitosan-antibody/fluorescent quantum dot nanoconjugates for targeted immunotheranostics of non-hodgkin B-cell lymphomas.

Int J Biol Macromol

January 2025

Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil. Electronic address:

B-cell non-Hodgkin lymphoma (NHL) is the most common hematologic malignancy, capable of invading the brain, meninges, and nerve roots of the brain and spine, leading to high lethality. Herein, we designed and developed novel nanostructures for the first time by biofunctionalizing chitosan with two specific antibodies (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!