A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantification of electrochemically accessible iridium oxide surface area with mercury underpotential deposition. | LitMetric

Research drives development of sustainable electrocatalytic technologies, but efforts are hindered by inconsistent reporting of advances in catalytic performance. Iridium-based oxide catalysts are widely studied for electrocatalytic technologies, particularly for the oxygen evolution reaction (OER) for proton exchange membrane water electrolysis, but insufficient techniques for quantifying electrochemically accessible iridium active sites impede accurate assessment of intrinsic activity improvements. We develop mercury underpotential deposition and stripping as a reversible electrochemical adsorption process to robustly quantify iridium sites and consistently normalize OER performance of benchmark IrO electrodes to a single intrinsic activity curve, where other commonly used normalization methods cannot. Through rigorous deconvolution of mercury redox and reproportionation reactions, we extract net monolayer deposition and stripping of mercury on iridium sites throughout testing using a rotating ring disk electrode. This technique is a transformative method to standardize OER performance across a wide range of iridium-based materials and quantify electrochemical iridium active sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540024PMC
http://dx.doi.org/10.1126/sciadv.adp8911DOI Listing

Publication Analysis

Top Keywords

electrochemically accessible
8
accessible iridium
8
mercury underpotential
8
underpotential deposition
8
electrocatalytic technologies
8
iridium active
8
active sites
8
intrinsic activity
8
deposition stripping
8
iridium sites
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!