Bi-Stable Metamaterials with Intrinsic Memory for Selective Wave Filtering Based on Frequency and Amplitude.

Adv Sci (Weinh)

School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, Storrs, CT, 06269, USA.

Published: November 2024

Analytical, numerical, and experimental methods are used to investigate the utility of metamaterials in controlling harmonic waves based on both their amplitude and frequency. By programming the metamaterials to support bi-stable configurations (i.e., two stable phases), the required conditions are elucidated for a transition wave (i.e., a topological soliton) to nucleate due to harmonic excitation, causing a phase change within our metamaterial. As each of these phases has its own unique transmission frequency range, such phase change is harnessed to control harmonic waves based on both their amplitude and frequency. As a demonstration of principle, a low/high-pass filter is shown by tuning the same metamaterial to change phase; from transmission to attenuation and vice versa. In addition, phase transitions taking place while preserving the metamaterial's state of attenuation or transmission are shown. Such materials can continue their functionality (i.e., either attenuation or transmission of waves) while keeping a record of extreme events that can cause their transition (i.e., have memory). These metamaterials can be useful in the next generations of advanced and functional acoustic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202405146DOI Listing

Publication Analysis

Top Keywords

harmonic waves
8
waves based
8
based amplitude
8
amplitude frequency
8
phase change
8
attenuation transmission
8
bi-stable metamaterials
4
metamaterials intrinsic
4
intrinsic memory
4
memory selective
4

Similar Publications

Distributed feedback lasers, which feature rapid wavelength tunability, are not presently available in the yellow and orange spectral regions, impeding spectroscopic studies of short-lived species that absorb light in this range. To meet this need, a rapidly tunable laser system was constructed, characterized, and demonstrated for measurements of the NH radical at 597.4 nm.

View Article and Find Full Text PDF

Laterally Excited Resonators Based on Single-Crystalline LiTaO Thin Film for High-Frequency Applications.

Micromachines (Basel)

November 2024

School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China.

High-performance acoustic resonators based on single-crystalline piezoelectric thin films have great potential in wireless communication applications. This paper presents the modeling, fabrication, and characterization of laterally excited bulk resonators (XBARs) utilizing the suspended ultra-thin (~420 nm) LiTaO (LT, with 42° YX-cut) film. The finite element analysis (FEA) was performed to model the LT-based XBARs precisely and to gain further insight into the physical behaviors of the acoustic waves and the loss mechanisms.

View Article and Find Full Text PDF

Rapid mapping of the mechanical properties of soft biological tissues from light microscopy to macroscopic imaging can transform fundamental biophysical research by providing clinical biomarkers to complement in vivo elastography. This work introduces superfast optical multifrequency time-harmonic elastography (OMTHE) to remotely encode surface and subsurface shear wave fields for generating maps of tissue stiffness with unprecedented detail resolution. OMTHE rigorously exploits the space-time propagation characteristics of multifrequency time-harmonic waves to address current limitations of biomechanical imaging and elastography.

View Article and Find Full Text PDF

Cardiovascular diseases claim over 10 million lives annually, highlighting the critical need for long-term monitoring and early detection of cardiac abnormalities. Existing techniques like electrocardiograms (ECG) and Holter are accurate but suffer from discomfort caused by body-attached electrodes. While wearable devices using photoplethysmography offer more convenience, they sacrifice accuracy and are susceptible to environmental interference.

View Article and Find Full Text PDF

Efficient generation of octave-separating orbital angular momentum beams via forked grating array in lithium niobite crystal.

Nanophotonics

August 2024

State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China.

The concept of orbital angular momentum (OAM) of light has not only advanced fundamental physics research but also yielded a plethora of practical applications, benefitting from the abundant methods for OAM generation based on linear, nonlinear and combined schemes. The combined scheme could generate octave-separating OAM beams, potentially increasing the channels for optical communication and data storage. However, this scheme faces a challenge in achieving high conversion efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!