Chemical oxidation of a double-twisted nanographene.

Chem Commun (Camb)

College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.

Published: November 2024

AI Article Synopsis

  • The chemical oxidation of a specific type of nanographene resulted in the creation of dicationic species, which are positively charged molecules.
  • These dicationic species showed a strong absorption band extending into the near-infrared region, reaching up to 1500 nm.
  • The unique structure of the nanographene, featuring two orthogonally aligned π-skeletons, was responsible for these optical properties and showed a significant dissymmetry factor at 1443 nm.

Article Abstract

Chemical oxidation of a double-twisted nanographene led to quantitative generation of corresponding dicationic species, which exhibited an intense absorption band tailing to 1500 nm wherein two orthogonally arranged π-skeletons contributed to transitions and a high dissymmetry factor of -0.0209 was recorded at 1443 nm in the NIR-II region.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc05264aDOI Listing

Publication Analysis

Top Keywords

chemical oxidation
8
oxidation double-twisted
8
double-twisted nanographene
8
nanographene chemical
4
nanographene led
4
led quantitative
4
quantitative generation
4
generation corresponding
4
corresponding dicationic
4
dicationic species
4

Similar Publications

The construction of thin film heterostructures has been a widely successful archetype for fabricating materials with emergent physical properties. This strategy is of particular importance for the design of multilayer magnetic architectures in which direct interfacial spin-spin interactions between magnetic phases in dissimilar layers lead to emergent and controllable magnetic behavior. However, crystallographic incommensurability and atomic-scale interfacial disorder can severely limit the types of materials amenable to this strategy, as well as the performance of these systems.

View Article and Find Full Text PDF

Terdizolamide phosphate (TZD), a second-generation oxazolidinone antibiotic with a long half-cycle, poses a potential threat to ecosystems and humans if present in water over an extended duration. Magnetic biochar (CF-biochar) loaded with CeFeO was firstly synthesized by microwave ablation-anaerobic carbonization using corn straw as raw material and Ce(NO) and Fe(NO) as modifiers. These modifiers were used as activators for peroxymonosulfate (PMS) and adsorbents for removing TZD.

View Article and Find Full Text PDF

A cost-effective strategy is reported utilizing ionic liquid (IL), 1-hexyl-3-methylimidazolium bisulfate ([HMIM] HSO), to delaminate TiC MXene, thereby enhancing its efficiency in electrocatalyzing tryptophan (Trp) oxidation. The positively charged IL effectively intercalates within the negatively charged MXene layers, fostering structural stability through π-π stacking and electrostatic interactions. Consequently, the resulting IL-TiC composite not only maintained the inherent electronic conductivity of TiC but also significantly augmented its electrocatalytic prowess.

View Article and Find Full Text PDF

Natural products, particularly plants, remain a vital source of bioactive compounds owing to their unparalleled metabolic diversity across pharmaceuticals, cosmetics, foods, and agriculture. However, this diversity, encompassing not only a multitude of compounds but also their varying chemical and physical properties, presents a challenge in their effective utilization. Targeted analysis of specific metabolites, as well as untargeted approaches covering a wide metabolite range, necessitate optimal extraction solvents tailored to meet diverse requirements.

View Article and Find Full Text PDF

Intermolecular oxidative N-N bond formation reactions are quite challenging and are largely uncharted. N-N linked dimeric indolosesquiterpene alkaloids represent an underexplored class of natural products, and strategies for direct dehydrogenative N-N bond formation are limited. Here, we have reported that a late-stage visible-light photoredox catalysis facilitates N-N bond formation, leading to the total syntheses of atropo-diastereomers dixiamycins A () and B ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!