Collagens are the foundational component of diverse tissues, including skin, bone, cartilage, and basement membranes, and are the most abundant protein class in animals. The fibrillar collagens are large, complex, multidomain proteins, all containing the characteristic triple helix motif. The most prevalent collagens are heterotrimeric, meaning that cells express at least two distinctive procollagen polypeptides that must assemble into specific heterotrimer compositions. The molecular mechanisms ensuring correct heterotrimeric assemblies are poorly understood - even for the most common collagen, type-I. The longstanding paradigm is that assembly is controlled entirely by the ~30 kDa globular C-propeptide (C-Pro) domain. Still, this dominating model for procollagen assembly has left many questions unanswered. Here, we show that the C-Pro paradigm is incomplete. In addition to the critical role of the C-Pro domain in templating assembly, we find that the amino acid sequence near the C terminus of procollagen's triple-helical domain plays an essential role in defining procollagen assembly outcomes. These sequences near the C terminus of the triple-helical domain encode conformationally stabilizing features that ensure only desirable C-Pro-mediated trimeric templates are committed to irreversible triple-helix folding. Incorrect C-Pro trimer assemblies avoid commitment to triple-helix formation thanks to destabilizing features in the amino acid sequences of their triple helix. Incorrect C-Pro assemblies are consequently able to dissociate and search for new binding partners. These findings provide a distinctive perspective on the mechanism of procollagen assembly, revealing the molecular basis by which incorrect homotrimer assemblies are avoided and setting the stage for a deeper understanding of the biogenesis of this ubiquitous protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573663PMC
http://dx.doi.org/10.1073/pnas.2412948121DOI Listing

Publication Analysis

Top Keywords

triple-helical domain
12
procollagen assembly
12
triple helix
8
c-pro domain
8
amino acid
8
incorrect c-pro
8
assembly
6
domain
5
c-pro
5
outcome-defining role
4

Similar Publications

Collagen as a bio-ink for 3D printing: a critical review.

J Mater Chem B

January 2025

Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK.

The significance of three-dimensional (3D) bioprinting in the domain of regenerative medicine and tissue engineering is readily apparent. To create a multi-functional bioinspired structure, 3D bioprinting requires high-performance bioinks. Bio-inks refer to substances that encapsulate viable cells and are employed in the printing procedure to construct 3D objects progressive through successive layers.

View Article and Find Full Text PDF

Synergistic toxicity of compound heterozygous mutations in the COL4A3 gene causes end-stage renal disease in A large family of Alport syndrome.

Gene

February 2025

Department of Kidney Transplantation, Center of Organ Transplantation, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China. Electronic address:

Alport syndrome (AS) is a genetic disorder characterized by kidney disease and hearing/vision abnormalities, resulting from mutations in the COL4A3, COL4A4, or COL4A5 genes. While numerous mutations have been identified in AS cases, the precise molecular mechanisms, particularly for compound mutations, remain under investigation. This study investigated the molecular mechanisms of AS in a proband with end-stage kidney disease (ESKD) using whole exome sequencing, which identified two compound heterozygous COL4A3 missense mutations: NM_000091.

View Article and Find Full Text PDF

The role of extraction method to collagen substrates in enzymolysis of type I collagenase.

Int J Biol Macromol

December 2024

Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China. Electronic address:

Article Synopsis
  • Collagens are key proteins in animal tissues with a unique structure that can only be broken down by specific enzymes called proteases; the study focuses on how different extraction methods affect this breakdown.
  • Two types of collagen were compared: acid-relaxed collagen (ARC) and acetic acid-pepsin extracted collagen (APC), showing that APC has a lower molecular weight and higher resistance to collagenase compared to ARC.
  • The research suggests that the differences in enzyme resistance and thermal stability between the two collagens stem from pepsin's action on the non-helical regions of APC, providing insights for better utilization of collagen in various applications.
View Article and Find Full Text PDF

Versican binds collagen via its G3 domain and regulates the organization and mechanics of collagenous matrices.

J Biol Chem

December 2024

Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; The Materials Research Science & Engineering Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; National Science Foundation Center for Engineering MechanoBiology, Philadelphia, Pennsylvania, USA; Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. Electronic address:

Type I collagen is the most abundant structural protein in the body and, with other fibrillar collagens, forms the fibrous network of the extracellular matrix. Another group of extracellular matrix polymers, the glycosaminoglycans, and glycosaminoglycan-modified proteoglycans, play important roles in regulating collagen behaviors and contribute to the compositional, structural, and mechanical complexity of the extracellular matrix. While the binding between collagen and small leucine-rich proteoglycans has been studied in detail, the interactions between collagen and the large bottlebrush proteoglycan versican are not well understood.

View Article and Find Full Text PDF

Collagens are the foundational component of diverse tissues, including skin, bone, cartilage, and basement membranes, and are the most abundant protein class in animals. The fibrillar collagens are large, complex, multidomain proteins, all containing the characteristic triple helix motif. The most prevalent collagens are heterotrimeric, meaning that cells express at least two distinctive procollagen polypeptides that must assemble into specific heterotrimer compositions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!