MicroRNAs as Regulators, Biomarkers, and Therapeutic Targets in Autism Spectrum Disorder.

Mol Neurobiol

Center On Translational Neuroscience, Institute of National Security, Minzu University of China, 27th South Zhongguancun Avenue, Beijing, 100081, China.

Published: November 2024

The pathogenesis of autism spectrum disorder (ASD) is complex and is mainly influenced by genetic and environmental factors. Some research has indicated that environmental aspects may interplay with genetic aspects to enhance the risk, and microRNAs (miRNAs) are probably factors in explaining this link between heredity and the environment. MiRNAs are single-stranded noncoding RNAs that can regulate gene expression at the posttranscriptional level. Some research has indicated that miRNAs are closely linked to neurological diseases. Many aberrantly expressed miRNAs have been observed in autism, and these dysregulated miRNAs are expected to be potential biomarkers and provide new strategies for the treatment of this disease. This article reviews the research progress of miRNAs in autism, including their biosynthesis and function. It is found that some miRNAs show aberrant expression patterns in brain tissue and peripheral blood of autistic patients, which may serve as biomarkers of the disease. In addition, the article explores the novel role of exosomes as carriers of miRNAs with the ability to cross the blood-brain barrier and unique expression profiles, offering new possibilities for diagnostic and therapeutic interventions in ASD. The potential of miRNAs in exosomes as diagnostic markers for ASD is specifically highlighted, as well as the prospect of using engineered exosome-encapsulated miRNAs for targeted therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-024-04582-xDOI Listing

Publication Analysis

Top Keywords

mirnas
10
autism spectrum
8
spectrum disorder
8
micrornas regulators
4
regulators biomarkers
4
biomarkers therapeutic
4
therapeutic targets
4
autism
4
targets autism
4
disorder pathogenesis
4

Similar Publications

In recent years, immune checkpoint inhibitors (ICIs) has emerged as a fundamental component of the standard treatment regimen for patients with head and neck squamous cell carcinoma (HNSCC). However, accurately predicting the treatment effectiveness of ICIs for patients at the same TNM stage remains a challenge. In this study, we first combined multi-omics data (mRNA, lncRNA, miRNA, DNA methylation, and somatic mutations) and 10 clustering algorithms, successfully identifying two distinct cancer subtypes (CSs) (CS1 and CS2).

View Article and Find Full Text PDF

LncRNA DNM1P35 sponges hsa-mir-326 to promote ovarian cancer progression.

Sci Rep

December 2024

Department of Gynaecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University/Wuxi Medical Center, Nanjing Medical University/Wuxi People's Hospital, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.

Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in cancer progression. We found lncRNA DNM1P35 is elevated in ovarian tumors compared to normal tissues, and demonstrated that lncRNA DNM1P35 promoted cancer cell proliferation, migration and invasion in SK-OV-3 and OVCAR-3 cell lines. Furthermore, lncRNA DNM1P35 also facilitated the epithelial-mesenchymal transition (EMT) of ovarian cancer cells.

View Article and Find Full Text PDF

Salivary extracellular vesicles isolation methods impact the robustness of downstream biomarkers detection.

Sci Rep

December 2024

Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France.

Extracellular vesicles (EVs), crucial mediators in cell-to-cell communication, are implicated in both homeostatic and pathological processes. Their detectability in easily accessible peripheral fluids like saliva positions them as promising candidates for non-invasive biomarker discovery. However, the lack of standardized methods for salivary EVs isolation greatly limits our ability to study them.

View Article and Find Full Text PDF

MicroRNA-668 alleviates renal fibrosis through PPARα/PGC-1α pathway.

Eur J Med Res

December 2024

Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China.

Background: The involvement of microRNA-668 (miR-668) in the onset and progression of renal fibrosis remains unclear. To this end, we aimed to explore the relevant mechanism of miR-668 in renal fibrosis.

Methods: C57BL/6 J male mice were randomly divided into sham-operated, unilateral ureteral obstruction (UUO), and UUO-fenofibrate groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!