Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Calcium signals in pancreatic cells collectives show a sharp transition from uncorrelated to correlated state resembling a phase transition as the slowly increasing glucose concentration crosses the tipping point. However, the exact nature or the order of this phase transition is not well understood. Using confocal microscopy to record the collective calcium activation of cells in an intact islet under changing glucose concentration in increasing and then decreasing way, we first show that in addition to the sharp transition, the coordinated calcium response exhibits a hysteresis indicating a critical, first order transition. A network model of cells combining link selection and coordination mechanisms capture the observed hysteresis loop and the critical nature of the transition. Our results point towards the understanding the role of islets as tipping elements in the pancreas that interconnected by perfusion, diffusion and innervation cause the tipping dynamics and abrupt insulin release.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537337 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!