Analysis of risk factors for painful diabetic peripheral neuropathy and construction of a prediction model based on Lasso regression.

Front Endocrinol (Lausanne)

The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.

Published: November 2024

AI Article Synopsis

  • * A total of 4,908 patients were analyzed, with factors like peripheral artery disease, the length of diabetes, smoking, and HbA1c levels identified as key risk factors for developing PDPN.
  • * The developed prediction model showed good accuracy with an AUC of 0.872 for the training dataset and 0.843 for validation, indicating it effectively predicts the likelihood of PDPN among patients.

Article Abstract

Objective: To evaluate the prevalence and risk factors of painful diabetic peripheral neuropathy (PDPN) in patients with type 2 diabetic peripheral neuropathy (DPN) in Hunan Province, and establish and verify the prediction model.

Methods: This was a retrospective study involving 4908 patients, all patients were randomly divided into the training dataset(3436 cases)and the validation dataset (1472 cases) in a ratio of 7:3. Electroneurogram, clinical signs,and symptoms were used to evaluate neuropathy. Least absolute shrinkage and selection operator (LASSO) regression was used to select the optimal factors, and multifactorial logistic regression analysis was used to build a clinical prediction model. Calibration plots, decision curve analysis (DCA), and subject work characteristic curves (ROC) were used to assess the predictive effects.

Result: The prevalence of PDPN was 33.2%, and the multivariate logistic regression model showed that peripheral artery disease, duration of diabetes, smoking, and HBA1c were independent risk factors for PDPN in patients with type 2 diabetes. ROC analysis results showed that the AUC of the established prediction model was 0.872 in the training dataset and 0.843 in the validation dataset. The calibration curve and decision curve show that the model has good consistency and significant net benefit.

Conclusion: 33.2% of DPN patients had PDPN in Hunan Province, China. Peripheral artery disease, duration of diabetes, smoking, and HBA1c are risk factors for PDPN in patients with type 2 diabetes. The prediction model is based on the above factors, which can well predict the probability of PDPN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534718PMC
http://dx.doi.org/10.3389/fendo.2024.1477570DOI Listing

Publication Analysis

Top Keywords

risk factors
16
prediction model
16
diabetic peripheral
12
peripheral neuropathy
12
pdpn patients
12
patients type
12
factors painful
8
painful diabetic
8
model based
8
lasso regression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!