Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the advent of the big data era, data security issues are becoming more common. Healthcare organizations have more data to use for analysis, but they lose money every year due to their inability to prevent data leakage. To overcome these challenges, research on the use of data protection technologies in healthcare is actively underway, particularly research on state-of-the-art technologies, such as federated learning announced by Google and blockchain technology, which has recently attracted attention. To learn about these research efforts, we explored the research, methods, and limitations of the most widely used privacy technologies. After investigating related papers published between 2017 and 2023 and identifying the latest technology trends, we selected related papers and reviewed related technologies. In the process, four technologies were the focus of this study: blockchain, federated learning, isomorphic encryption, and differential privacy. Overall, our analysis provides researchers with insight into privacy technology research by suggesting the limitations of current privacy technologies and suggesting future research directions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536567 | PMC |
http://dx.doi.org/10.1177/20552076241282242 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!