Cytokinesis, the physical division of one cell into two, is typically assumed to use the same molecular process across animal cells. However, regulation of cell division can vary significantly among different cell types, even within the same multicellular organism. Using six fast-acting temperature-sensitive (ts) cytokinesis-defective mutants, we found that each had unique cell type-specific profiles in the early 2-cell through 8-cell embryo. Certain cell types were more sensitive than others to actomyosin and spindle signaling disruptions, disrupting two members of the same complex could result in different phenotypes, and protection against actomyosin inhibition did not always protect against spindle signaling inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536048PMC
http://dx.doi.org/10.17912/micropub.biology.001316DOI Listing

Publication Analysis

Top Keywords

cell type-specific
8
cell types
8
spindle signaling
8
cell
6
type-specific regulation
4
regulation cytokinetic
4
cytokinetic pathways
4
pathways early
4
early embryo
4
embryo cytokinesis
4

Similar Publications

Multi-omics analyses of early-onset familial Alzheimer's disease and Sanfilippo syndrome zebrafish models reveal commonalities in disease mechanisms.

Biochim Biophys Acta Mol Basis Dis

January 2025

Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia.

Sanfilippo syndrome (mucopolysaccharidosis type III, MPSIII) causes childhood dementia, while Alzheimer's disease is the most common type of adult-onset dementia. There is no cure for either of these diseases, and therapeutic options are extremely limited. Increasing evidence suggests commonalities in the pathogenesis of these diseases.

View Article and Find Full Text PDF

A novel interleukin-10 antibody graft to treat inflammatory bowel disease.

Structure

January 2025

Novartis Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA. Electronic address:

Inflammatory bowel disease (IBD) consists of chronic conditions that severely impact a patient's health and quality of life. Interleukin-10 (IL-10), a potent anti-inflammatory cytokine has strong genetic links to IBD susceptibility and has shown strong efficacy in IBD rodent models, suggesting it has great therapeutic potential. However, when tested in clinical trials for IBD, recombinant human IL-10 (rhIL-10) showed weak and inconsistent efficacy due to its short half-life and pro-inflammatory properties that counteract the anti-inflammatory efficacy.

View Article and Find Full Text PDF

Epigenetic therapy has gained interest in treating cardiovascular diseases, but preclinical studies often encounter challenges with cell-type-specific effects or batch-to-batch variation, which have limited identification of novel drug candidates targeting angiogenesis. To address these limitations and improve the reproducibility of epigenetic drug screening, we redesigned a 3D in vitro fibrin bead assay to utilize immortalized human aortic endothelial cells (TeloHAECs) and screened a focused compound library with 105 agents. Compared to the established model using primary human umbilical vein endothelial cells, TeloHAECs needed a higher-density fibrin gel for optimal sprouting, successfully forming sprouts under both normoxic and hypoxic cell culture conditions.

View Article and Find Full Text PDF

Cell-Type Specific miRNA Regulatory Network Responses to ABA Stress Revealed by Time Series Transcriptional Atlases in Arabidopsis.

Adv Sci (Weinh)

January 2025

School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.

In plants, microRNAs (miRNAs) participate in complex gene regulatory networks together with the transcription factors (TFs) in response to biotic and abiotic stresses. To date, analyses of miRNAs-induced transcriptome remodeling are at the whole plant or tissue levels. Here, Arabidopsis's ABA-induced single-cell RNA-seq (scRNA-seq) is performed at different stages of time points-early, middle, and late.

View Article and Find Full Text PDF

Cpeb1 remodels cell type-specific translational program to promote fear extinction.

Sci Adv

January 2025

Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex () during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!