Introduction: Accurate in-hospital mortality prediction following percutaneous coronary intervention (PCI) is crucial for clinical decision-making. Machine Learning (ML) and Data Mining methods have shown promise in improving medical prognosis accuracy.
Methods: We analyzed a dataset of 4,677 patients from the Regional Vascular Center of Primorsky Regional Clinical Hospital No. 1 in Vladivostok, collected between 2015 and 2021. We utilized Extreme Gradient Boosting, Histogram Gradient Boosting, Light Gradient Boosting, and Stochastic Gradient Boosting for mortality risk prediction after primary PCI in patients with acute ST-elevation myocardial infarction. Model selection was performed using Monte Carlo Cross-validation. Feature selection was enhanced through Recursive Feature Elimination (RFE) and Shapley Additive Explanations (SHAP). We further developed hybrid models using Augmented Grey Wolf Optimizer (AGWO), Bald Eagle Search Optimization (BES), Golden Jackal Optimizer (GJO), and Puma Optimizer (PO), integrating features selected by these methods with the traditional GRACE score.
Results: The hybrid models demonstrated superior prediction accuracy. In scenario (1), utilizing GRACE scale features, the Light Gradient Boosting Machine (LGBM) and Extreme Gradient Boosting (XGB) models optimized with BES achieved Recall values of 0.944 and 0.954, respectively. In scenarios (2) and (3), employing SHAP and RFE-selected features, the LGB models attained Recall values of 0.963 and 0.977, while the XGB models achieved 0.978 and 0.99.
Discussion: The study indicates that ML models, particularly the XGB optimized with BES, can outperform the conventional GRACE score in predicting in-hospital mortality. The hybrid models' enhanced accuracy presents a significant step forward in risk assessment for patients post-PCI, offering a potential alternative to existing clinical tools. These findings underscore the potential of ML in optimizing patient care and outcomes in cardiovascular medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534735 | PMC |
http://dx.doi.org/10.3389/fcvm.2024.1419551 | DOI Listing |
Health Place
January 2025
Department of Population Health Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA. Electronic address:
This study employs an innovative multi-constraint Monte Carlo simulation method to estimate suppressed county-level cancer counts for population subgroups and extend the downscaling from county to ZIP Code Tabulation Areas (ZCTA) in the U.S. Given the known cancer counts at a higher geographic level and larger demographic groups at the same geographic level as constraints, this method uses the population structure as probability in the Monte Carlo simulation process to estimate suppressed data entries.
View Article and Find Full Text PDFJAMIA Open
February 2025
Artificial Intelligence (AI) for Health Institute (AIHealth), Washington University in St Louis, St Louis, MO 63130, United States.
Objective: Extracorporeal membrane oxygenation (ECMO) is among the most resource-intensive therapies in critical care. The COVID-19 pandemic highlighted the lack of ECMO resource allocation tools. We aimed to develop a continuous ECMO risk prediction model to enhance patient triage and resource allocation.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurological condition characterized by a loss in cognitive functions, with no disease-modifying medication now available. It is crucial for early detection and treatment of Alzheimer's disease before clinical manifestation. The stage between cognitively healthy older persons and AD is known as mild cognitive impairment (MCI).
View Article and Find Full Text PDFBackground: Measuring and estimating alcohol consumption (AC) is important for individual health, public health, and Societal benefits. While self-report and diagnostic interviews are commonly used, incorporating biological-based indices can offer a complementary approach.
Methods: We evaluate machine learning (ML) based predictions of AC using blood and urine-derived biomarkers.
Increasing evidence suggests the involvement of metabolic alterations in neurological disorders, including Alzheimer's disease (AD), and highlights the significance of the peripheral metabolome, influenced by genetic factors and modifiable environmental exposures, for brain health. In this study, we examined 1,387 metabolites in plasma samples from 1,082 dementia-free middle-aged participants of the population-based Rotterdam Study. We assessed the relation of metabolites with general cognition (G-factor) and magnetic resonance imaging (MRI) markers using linear regression and estimated the variance of these metabolites explained by genes, gut microbiome, lifestyle factors, common clinical comorbidities, and medication using gradient boosting decision tree analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!