A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing Coronary Revascularization Decisions: The Promising Role of Large Language Models as a Decision-Support Tool for Multidisciplinary Heart Team. | LitMetric

Background: While clinical practice guidelines advocate for multidisciplinary heart team (MDHT) discussions in coronary revascularization, variability in implementation across health care settings remains a challenge. This variability could potentially be addressed by language learning models like ChatGPT, offering decision-making support in diverse health care environments. Our study aims to critically evaluate the concordance between recommendations made by MDHT and those generated by language learning models in coronary revascularization decision-making.

Methods: From March 2023 to July 2023, consecutive coronary angiography cases (n=86) that were referred for revascularization (either percutaneous or surgical) were analyzed using both ChatGPT-3.5 and ChatGPT-4. Case presentation formats included demographics, medical background, detailed description of angiographic findings, and SYNTAX score (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery; I and II), which were presented in 3 different formats. The recommendations of the models were compared with those of an MDHT.

Results: ChatGPT-4 showed high concordance with decisions made by the MDHT (accuracy 0.82, sensitivity 0.8, specificity 0.83, and kappa 0.59), while ChatGPT-3.5 (0.67, 0.27, 0.84, and 0.12, respectively) showed lower concordance. Entropy and Fleiss kappa of ChatGPT-4 were 0.09 and 0.9, respectively, indicating high reliability and repeatability. The best correlation between ChatGPT-4 and MDHT was achieved when clinical cases were presented in a detailed context. Specific subgroups of patients yielded high accuracy (>0.9) of ChatGPT-4, including those with left main disease, 3 vessel disease, and diabetic patients.

Conclusions: The present study demonstrates that advanced language learning models like ChatGPT-4 may be able to predict clinical recommendations for coronary artery disease revascularization with reasonable accuracy, especially in specific patient groups, underscoring their potential role as a supportive tool in clinical decision-making.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCINTERVENTIONS.124.014201DOI Listing

Publication Analysis

Top Keywords

coronary revascularization
12
language learning
12
learning models
12
multidisciplinary heart
8
heart team
8
health care
8
chatgpt-4
6
revascularization
5
models
5
coronary
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!