High-performance fiber-reinforced composite materials demonstrate great potential for manufacturing diaphragms in human-engineered acoustic loudspeakers. However, the notable scarcity of high-quality fibers and the uncontrollable nature of the diaphragm structure limit the production of high-quality sound that conforms to human hearing. In this study, a novel composite diaphragm material is devloped by integrating the swelling carboxymethyl cellulose microfiber (CMF) with the hot-melted sheath-core fiber (SCF) based on the "interpenetrating polymeric network" ("IPN") strategy. Simulation methods and Flory-Huggins theory are applied to explain the mechanism of fiber-structure-property interaction in composite diaphragm materials. Owing to the distinct microstructure, this bio-based diaphragm material shows superior mechanical characteristics, including low density (≈0.92 g cm ), high tensile strength (≈235 MPa), and high modulus (≈9.73 GPa). Moreover, the loudspeaker mounted with bio-based diaphragm material exhibits enhanced sensitivity (≈82.6 dB) and stable performance across a broad frequency spectrum. This study not only elucidates the multiphysics working principles of loudspeakers but also establishes a crucial connection between the physical properties of diaphragms and loudspeaker performance. It opens up new avenues for the design of high-performance bio-based loudspeaker diaphragms in high-fidelity (Hi-Fi) acoustic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202406559 | DOI Listing |
Commun Eng
January 2025
Hydrogen and Ammonium Energy R&D Center, National Institute of Clean-and-Low-Carbon Energy, Beijing, China.
Alkaline water electrolysers are ideal for gigawatt-scale hydrogen production due to the usage of non-precious metal and low-cost raw materials. However, their performances are modest with the separated electrode and diaphragm structure which can date back to more than 100 years ago. Here we report a catalyst-coated diaphragm assembly to improve the performance of alkaline water electrolysers.
View Article and Find Full Text PDFConf Proc Int Conf Image Form Xray Comput Tomogr
August 2024
Department of Radiology, Perelman School of Medicine, Philadelphia, PA, USA.
Respiratory motion phantoms can be used for evaluation of CT imaging technologies such as motion artifact reduction algorithms and deformable image registration. However, current respiratory motion phantoms do not exhibit detailed lung tissue structures and thus do not provide a realistic testing environment. This paper presents PixelPrint, a method for 3D-printing deformable lung phantoms featuring highly realistic internal structures, suitable for a broad range of CT evaluations, optimizations, and research.
View Article and Find Full Text PDFRadiol Med
January 2025
Department of Interventional Radiology, University Hospital Strasbourg, Strasbourg, France.
Objectives: To evaluate the at-risk organs that require protection during percutaneous cryoablation (PCA) of renal tumours and the correlation with patient and target lesion characteristics, type of protective measure used and postoperative outcomes.
Materials And Methods: Single-centre retrospective review of patients with renal tumours who underwent PCA between 2008 and 2020. Final analysis included 374 tumours.
PLoS One
January 2025
Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
End-user feedback early in product development is important for optimizing multipurpose prevention technologies for HIV and pregnancy prevention. We evaluated the acceptability of the 90-day dapivirine levonorgestrel ring (DPV-LNG ring) used for 14 days compared to a dapivirine-only ring (DVR-200mg) in MTN-030/IPM 041 (n = 23), and when used for 90 days cyclically or continuously in MTN-044/IPM 053/CCN019 (n = 25). We enrolled healthy, non-pregnant, HIV-negative women aged 18-45 in Pittsburgh, PA and Birmingham, AL (MTN-030 only).
View Article and Find Full Text PDFCattail (), a wetland plant, is emerging as a sustainable materials resource. While most of the species are proven to be a fiber-yielding crop, exhibits the broadest leaf size (5-30 mm), yields highest amount of fiber (≈190.9 g), and captures maximum CO (≈1270 g).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!