Nanocrystalline structure, oxidation temperature, and "The Third Element Effect" are among the factors that can profoundly govern the characteristics of the oxide scales that develop on oxidation-resistant alloys, thereby, their synergistic effect can considerably influence alloys' oxidation kinetics. As a result of the synergy, certain iron-chromium-aluminium (Fe-Cr-Al) alloy showed superior oxidation resistance at 800 °C than at 700 °C (whereas oxidation resistance commonly decreases with the increase in temperature). The superior resistance at higher temperatures is considerably enhanced when the structure of the alloy is nanocrystalline vis-à-vis the common microcrystalline structure. Nanocrystalline alloy oxidizes at a negligible rate (c.f., its microcrystalline counterpart). The characterization of the oxide scale demonstrates that the oxidation temperature governs the formation of the protective oxide scale with/without the assistance of the "Third element Effect". The findings may potentially have considerable commercial implications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202404409 | DOI Listing |
J Mol Model
January 2025
Nanjing Hydraulic Research Institute, Shanghai, China.
Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.
View Article and Find Full Text PDFLasers Med Sci
January 2025
University of Zurich, Zurich, Switzerland.
The aim of this study was to compare the effectiveness of different types of low level laser treatment (LLLT) in reducing pain levels, changing oxygen saturation and bite force in patients with myofacial pain syndrome (MPS). 45 patients were randomly assigned to three groups: Group 1 (GRR laser, n = 15) received LLLT with Gallium-Aluminium-Arsenide (GaAlAs) diode laser with a wavelength of 904 nm and red laser with a wavelength of 650 nm over masseter muscle region. Group 2 (Nd: YAG laser, n = 15) were treated with Neodymium-doped Yttrium Aluminium Garnet laser with a wavelength of 1064 nm and the same protocol with Nd: YAG laser was performed in the Group 3 (placebo, n = 15) using sham device.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700 009, India.
Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Department of Chemistry, Chulalongkorn University, Bangkok, Thailand.
The accumulation pattern of some inorganic pollutants in quarry sites around Ogun State was modeled using a Fuzzy comprehensive assessment (FCA). Potentially toxic elements (PTEs) and naturally occurring radionuclides materials (NORMs) were assessed from soil samples collected from ten quarry sites in three districts (Odeda, Ajebo, and Ijebu Ode) in Ogun State. Three (3) NORMs ( K, U, Th) were assessed using gamma spectrometer with a NaI detector while ten (10) PTEs (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined by digestion method using Inductively coupled plasma optical emission spectrophotometer.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA.
The mechanisms underlying cooperative activation and inactivation of myocardial force extend from local, near-neighbor interactions involving troponin-tropomyosin regulatory units (RU) and crossbridges (XB) to more global interactions across the sarcomere. To better understand these mechanisms in the hearts of small and large mammals, we undertook a simplified mathematical approach to assess the contribution of three types of near-neighbor cooperative interactions, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!