Organ toxicities associated with diet-induced obesity in rats: Investigation of changes in activities selected enzymes.

Biotechnol Appl Biochem

Department of Mathematics and Science Education, Faculty of Education, Van Yuzuncu Yil University, Van, Turkey.

Published: November 2024

Obesity stands out as one of the most significant health problems in the modern world. The prevalence of high-calorie diets (HCDs) globally exacerbates this condition. Throughout history, plants and plant-derived food products have been utilized for medicinal purposes, demonstrating their efficacy in the treatment and prevention of various diseases. Gundelia tournefortii (GT), a plant of interest, is known to possess beneficial properties. Hence, this study aimed to investigate the immunotoxic and neurotoxic effects of two different doses of GT plant extract on the liver, brain, and heart tissues of obese rats. For this purpose, Wistar male rats were divided into four groups: "CG," "HCDG," "HCDGUN1," and "HCDGUN2" At the conclusion of the study, adenosine deaminase (ADA) and myeloperoxidase (MPO) activities, as well as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) biomarkers, were evaluated in the liver, heart, and brain tissues. The study results revealed a statistically significant increase in ADA and MPO activities in the HCDG group compared to the CG group, alongside a significant decrease in the HCDGUN groups compared to the HCDG group. Regarding AChE and BChE activities, a statistically significant decrease was observed in the HCDG group compared to the CG group, whereas an increase was noted in the HCDGUN groups relative to the HCDG group, with the latter approaching values similar to those of the control group. In conclusion, the intake of GT plant extract exhibited positive effects on the immunotoxic and neurotoxic effects induced by HCD in rats with an experimental obesity model, as evidenced by tissue biomarker evaluations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bab.2694DOI Listing

Publication Analysis

Top Keywords

hcdg group
16
immunotoxic neurotoxic
8
neurotoxic effects
8
plant extract
8
mpo activities
8
group compared
8
compared group
8
hcdgun groups
8
group
7
organ toxicities
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!