Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims: This study aims to identify and address significant limitations in current culture-based regulatory methods used for monitoring microbiological water quality. Specifically, these methods' inability to distinguish between planktonic forms and aggregates containing higher bacterial loads and associated pathogens may lead to a severe underestimation of exposure risks, with critical public health implications.
Methods And Results: We employed a novel methodology combining size fractionation with ALERT (Automatic Lab-in-a-vial E.coli Remote Tracking), an automated rapid method for comprehensive quantification of culturable fecal indicator bacteria (FIB). Our findings reveal a substantial and widespread presence of aggregate-bound indicator bacteria across various water matrices and geographical locations. Comprehensive bacterial counts consistently exceeded those obtained by traditional methods by significant multiples, such as an average of 3.4× at the Seine River 2024 Olympic venue, and occasionally up to 100× in irrigation canals and wastewater plant effluent. These results, supported by microscopic and molecular analyses, underscore a systematic bias in global water safety regulatory frameworks.
Conclusions: Our research demonstrates the inadequacy of traditional culture-based techniques in assessing microbiological risks posed by aggregate-bound FIB and associated pathogens, particularly in water matrices affected by FIB-rich fecal particles from recent sewer overflows or sediment, which can carry higher infectious risks. Incorporating comprehensive FIB analysis techniques, including molecular methods and rapid culture-based approaches as shown in this study, offers a promising and effective solution to these risk assessment limitations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jambio/lxae280 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!