Inferring an individual's preferences from their observable behavior is a key step in the development of assistive decision-making technology. Although machine learning models such as neural networks could in principle be deployed toward this inference, a large amount of data is required to train such models. Here, we present an approach in which a cognitive model generates simulated data to augment limited human data. Using these data, we train a neural network to invert the model, making it possible to infer preferences from behavior. We show how this approach can be used to infer the value that people assign to food items from their eye movements when choosing between those items. We demonstrate first that neural networks can infer the latent preferences used by the model to generate simulated fixations, and second that simulated data can be beneficial in pretraining a network for predicting human-reported preferences from real fixations. Compared to inferring preferences from choice alone, this approach confers a slight improvement in predicting preferences and also allows prediction to take place prior to the choice being made. Overall, our results suggest that using a combination of neural networks and model-simulated training data is a promising approach for developing technology that infers human preferences.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cogs.70015DOI Listing

Publication Analysis

Top Keywords

neural networks
16
models neural
8
networks infer
8
infer preferences
8
simulated data
8
preferences
7
data
6
neural
5
inverting cognitive
4
cognitive models
4

Similar Publications

Background: Machine learning models can reduce the burden on doctors by converting medical records into International Classification of Diseases (ICD) codes in real time, thereby enhancing the efficiency of diagnosis and treatment. However, it faces challenges such as small datasets, diverse writing styles, unstructured records, and the need for semimanual preprocessing. Existing approaches, such as naive Bayes, Word2Vec, and convolutional neural networks, have limitations in handling missing values and understanding the context of medical texts, leading to a high error rate.

View Article and Find Full Text PDF

Background: Systemic diseases are often associated with endothelial cell (EC) dysfunction. A key function of ECs is to maintain the barrier between the blood and the interstitial space. The integrity of the endothelial cell barrier is maintained by VE-Cadherin homophilic interactions between adjacent cells.

View Article and Find Full Text PDF

Objectives: Approximal caries diagnosis in children is difficult, and artificial intelligence-based research in pediatric dentistry is scarce. To create a convolutional neural network (CNN)-based diagnostic system for the prompt and efficient identification of approximal caries in pediatric patients aged 5-12 years.

Materials And Methods: Pediatric patients' digital periapical radiographic images were collected to create a unique dataset.

View Article and Find Full Text PDF

Individual differences in how the brain responds to novelty are present from infancy. A common method of studying novelty processing is through event-related potentials (ERPs). While ERPs possess millisecond precision, spatial resolution remains poor, especially in infancy.

View Article and Find Full Text PDF

Convolutional neural networks (CNNs) have been widely utilized for decoding motor imagery (MI) from electroencephalogram (EEG) signals. However, extracting discriminative spatial-temporal-spectral features from low signal-to-noise ratio EEG signals remains challenging. This paper proposes MBMSNet , a multi-branch, multi-scale, and multi-view CNN with a lightweight temporal attention mechanism for EEG-Based MI decoding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!