AI Article Synopsis

  • * Detailed protocols are provided for preparing and expanding airway basal stem cells from mice and induced pluripotent stem cells, followed by methods for their transplantation into mice.
  • * Successful engraftment leads to the restoration of key airway functions and cell types, with timelines for generating and using these stem cells outlined for researchers.

Article Abstract

Durable and functional regeneration of the airway epithelium in vivo with transplanted stem cells has the potential to reconstitute healthy tissue in diseased airways, such as in cystic fibrosis or primary ciliary dyskinesia. Here, we present detailed protocols for the preparation and culture expansion of murine primary and induced pluripotent stem cell-derived airway basal stem cells (iBCs) and methods for their intra-airway transplantation into polidocanol-conditioned murine recipients to achieve durable in vivo airway regeneration. Reconstitution of the airway tissue resident epithelial stem cell compartment of immunocompetent mice with syngeneic donor cells leverages the extensive self-renewal and multipotent differentiation properties of basal stem cells (BCs) to durably generate a broad diversity of mature airway epithelial lineages in vivo. Engrafted donor-derived cells re-establish planar cell polarity as well as functional ciliary transport. By using this same approach, human primary BCs or iBCs transplanted into NOD-SCID gamma recipient mice similarly display engraftment and multilineage airway epithelial differentiation in vivo. The time to generate mouse or human iBCs takes ~60 d, which can be reduced to ~20 d if previously differentiated cells are thawed from cryopreserved iBC archives. The tracheal conditioning regimen and cell transplantation procedure is completed in 1 d. A competent graduate student or postdoctoral trainee should be able to perform the procedures listed in this protocol.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41596-024-01067-yDOI Listing

Publication Analysis

Top Keywords

stem cells
16
basal stem
12
functional regeneration
8
airway
8
vivo airway
8
airway epithelium
8
airway basal
8
airway epithelial
8
cells
7
stem
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!