Gradual chromosomal lagging drive programmed genome elimination in hemiclonal fishes from the genus Hypseleotris.

Sci Rep

Centre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.

Published: November 2024

Most eukaryotes maintain the stability of their cellular genome sizes to ensure genome transmission to offspring through sexual reproduction. However, some alter their genome size by selectively eliminating parts or increasing ploidy at specific developmental stages. This phenomenon of genome elimination or whole genome duplication occurs in animal hybrids reproducing asexually. Such genome alterations occur during gonocyte development ensuring successful reproduction of these hybrids. Although multiple examples of genome alterations are known, the underlying molecular and cellular processes involved in selective genome elimination and duplication remain largely unknown. Here, we uncovered the process of selective genome elimination and genome endoreplication in hemiclonal fish hybrids from the genus Hypseleotris. Specifically, we examined parental sexual species H. bucephala and hybrid H. bucephala × H. gymnocephala (HB × HX). We observed micronuclei in the cytoplasm of gonial cells in the gonads of hybrids, but not in the parental sexual species. We also observed misaligned chromosomes during mitosis which were unable to attach to the spindle. Moreover, we found that misaligned chromosomes lag during anaphase and subsequently enclose in the micronuclei. Using whole mount immunofluorescent staining, we showed that chromatid segregation has failed in lagging chromosomes. We also performed three-dimensional comparative genomic hybridization (3D-CGH) using species-specific probes to determine the role of micronuclei in selective genome elimination. We repeatedly observed that misaligned chromosomes of the H. bucephala genome were preferentially enclosed in micronuclei of hybrids. In addition, we detected mitotic cells without a mitotic spindle as a potential cause of genome duplication. We conclude that selective genome elimination in the gonads of hybrids occurs through gradual elimination of individual chromosomes of one parental genome. Such chromosomes, unable to attach to the spindle, lag and become enclosed in micronuclei.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538498PMC
http://dx.doi.org/10.1038/s41598-024-78278-6DOI Listing

Publication Analysis

Top Keywords

genome elimination
24
genome
16
selective genome
16
misaligned chromosomes
12
genus hypseleotris
8
elimination genome
8
genome duplication
8
genome alterations
8
parental sexual
8
sexual species
8

Similar Publications

Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.

View Article and Find Full Text PDF

Microsatellites, or simple sequence repeats (SSRs), are short tandemly repeated DNA sequences widely dispersed throughout the genome. Their high variability, co-dominant inheritance, and ease of detection make them valuable genetic markers, frequently used to study genetic diversity, population structure, and evolutionary processes. In the context of malaria research, particularly with Plasmodium falciparum (P.

View Article and Find Full Text PDF

Hyperreactive B cells instruct their elimination by T cells to curb autoinflammation and lymphomagenesis.

Immunity

December 2024

Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Max-Planck Institute of Biochemistry, 82152 Planegg, Germany. Electronic address:

B cell immunity carries the inherent risk of deviating into autoimmunity and malignancy, which are both strongly associated with genetic variants or alterations that increase immune signaling. Here, we investigated the interplay of autoimmunity and lymphoma risk factors centered around the archetypal negative immune regulator TNFAIP3/A20 in mice. Counterintuitively, B cells with moderately elevated sensitivity to stimulation caused fatal autoimmune pathology, while those with high sensitivity did not.

View Article and Find Full Text PDF

Objective: Staphylococcus aureus (SA), including methicillin-resistant strains (MRSAs), is a major cause of skin and soft tissue infections (SSTIs) in military populations. This study investigated SSTI incidence and SA carriage in a military training site over 16 weeks using a prospective observational cohort design.

Methods: Two training cohorts provided pre- and post-training self-collected swabs for bacterial carriage, and environmental swabs from accommodations, personal items, and training facilities.

View Article and Find Full Text PDF

Mitigating Antibiotic Resistance: The Utilization of CRISPR Technology in Detection.

Biosensors (Basel)

December 2024

Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China.

Antibiotics, celebrated as some of the most significant pharmaceutical breakthroughs in medical history, are capable of eliminating or inhibiting bacterial growth, offering a primary defense against a wide array of bacterial infections. However, the rise in antimicrobial resistance (AMR), driven by the widespread use of antibiotics, has evolved into a widespread and ominous threat to global public health. Thus, the creation of efficient methods for detecting resistance genes and antibiotics is imperative for ensuring food safety and safeguarding human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!