Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Few-shot learning (FSL) uses prior knowledge and supervised experience to effectively classify hyperspectral images (HSIs), thereby reducing the cost of large numbers of labeled samples. However, existing few-shot methods ignore the correlation between cross-domain feature channels, and the feature representation ability is insufficient. To address above issue, this paper proposes a novel Residual Channel Attention Based Sample Adaptation Few-Shot Learning for Hyperspectral Image Classification(RCASA-FSL) for hyperspectral image classification (HSIC), which can capture and enhance cross-domain dependencies through multi-layer residual connection and random-based feature recalibration. Specifically, a Deep Residual Feature Channel Attention Mechanism (DRFCAM) is designed to obtain cross-domain dependencies by residual concatenation, and further the residual structure is stacked for mining depth discrimination information. Furthermore, a new Random-based Feature Recalibration Module (RFRM) is proposed to reassign the feature weights via random matrix, which fully explore feature weight relationships to guide the sample adaptation process. Besides, we design a joint loss function with combining the FSL loss and domain adaptive loss for further optimization model. Experiments conducted on several standard hyperspectral datasets demonstrate that the proposed RCASA-FSL is superior to other FSL techniques in both quantitative and qualitative aspects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538258 | PMC |
http://dx.doi.org/10.1038/s41598-024-77747-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!