A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring the limits of hierarchical world models in reinforcement learning. | LitMetric

Exploring the limits of hierarchical world models in reinforcement learning.

Sci Rep

Department of Computer Science, Institute for Neural Computation, Ruhr-University Bochum, Bochum, 44787, Germany.

Published: November 2024

Hierarchical model-based reinforcement learning (HMBRL) aims to combine the sample efficiency of model-based reinforcement learning with the abstraction capability of hierarchical reinforcement learning. While HMBRL has great potential, the structural and conceptual complexities of current approaches make it challenging to extract general principles, hindering understanding and adaptation to new use cases, and thereby impeding the overall progress of the field. In this work we describe a novel HMBRL framework and evaluate it thoroughly. We construct hierarchical world models that simulate the environment at various levels of temporal abstraction. These models are used to train a stack of agents that communicate top-down by proposing goals to their subordinate agents. A significant focus of this study is the exploration of a static and environment agnostic temporal abstraction, which allows concurrent training of models and agents throughout the hierarchy. Unlike most goal-conditioned H(MB)RL approaches, it also leads to comparatively low dimensional abstract actions. Although our HMBRL approach did not outperform traditional methods in terms of final episode returns, it successfully facilitated decision-making across two levels of abstraction. A central challenge in enhancing our method's performance, as uncovered through comprehensive experimentation, is model exploitation on the abstract level of our world model stack. We provide an in depth examination of this issue, discussing its implications and suggesting directions for future research to overcome this challenge. By sharing these findings, we aim to contribute to the broader discourse on refining HMBRL methodologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538428PMC
http://dx.doi.org/10.1038/s41598-024-76719-wDOI Listing

Publication Analysis

Top Keywords

reinforcement learning
16
hierarchical models
8
model-based reinforcement
8
learning hmbrl
8
temporal abstraction
8
hmbrl
6
exploring limits
4
hierarchical
4
limits hierarchical
4
models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!