The turbulent ocean surface boundary layer is a key part of the climate system affecting both the energy and carbon cycles. Accurately simulating the boundary layer is critical in improving climate model performance, which deeply relies on our understanding of the turbulence in the boundary layer. Turbulent energy sources in the boundary layer are traditionally believed to be dominated by waves, winds and convection. Recently, submesoscale phenomena with spatial scales of 0.1~10 km at ocean fronts have been shown to also make a contribution. Here, by applying a non-dimensional turbulent kinetic energy budget equation, we show that the submesoscale geostrophic shear production at fronts is a significant turbulent energy source within the ocean boundary layer away from the sea surface. The contribution reaches 34% of the total dissipation in winter and 17% in summer at the mid-depth of the boundary layer, despite its intermittency in space and time. This work indicates fundamental deficiencies in previous conceptions of ocean boundary layer turbulence, and invites a reappraisal of the sampling scale in observations, model resolution and parameterizations, and other consequences of the global energy budget.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538263PMC
http://dx.doi.org/10.1038/s41467-024-53959-yDOI Listing

Publication Analysis

Top Keywords

boundary layer
32
ocean surface
8
boundary
8
surface boundary
8
layer
8
layer turbulent
8
turbulent energy
8
energy budget
8
ocean boundary
8
ocean
5

Similar Publications

Aluminum alloys have promising characteristics which make them more useful in industrial applications for thermal management and entropy of the fluidic system. Hence, the current research deals with the analysis of entropy and thermal performance of (CHO-HO)/50:50% saturated by (AA7072/AA7076/TiAIV) alloys. Traditional problem modified using enhanced characteristics of ternary alloys and hydrocarbon 50:50% base fluid.

View Article and Find Full Text PDF

Spin-polarized edge states in two-dimensional materials hold promise for spintronics and quantum computing applications. Constructing stable edge states by tailoring two-dimensional semiconductor materials with bulk-boundary correspondence is a feasible approach. Recently layered NiI is suggested as a two-dimensional type-II multiferroic semiconductor with intrinsic spiral spin ordering and chirality-induced electric polarization.

View Article and Find Full Text PDF

Multi-Functional Semiconductor Polymer Doped Wide Bandgap Layer for All-Perovskite Solar Cells with High Efficiency and Long Durability.

Small

December 2024

Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.

The study presents a multi-functional and semiconductor polymer poly[bis(3-hexylthiophen-2-yl)thieno[3,4-c]pyrrole-4,6-dione] (PBDTTPD) doping strategy that significantly enhanced the performance of the two-terminal all-perovskite tandem perovskite solar cells (T-PSCs). An optimized power conversion efficiency (PCE) of 26.87% has been achieved.

View Article and Find Full Text PDF

Background: Trichofolliculoma (TF) is a rare condition, and its imaging features have been inadequately studied, leading to frequent misdiagnoses in clinical practice.

Objective: The aim of our study was to investigate the very high frequency (VHF) ultrasound characteristics of TF, identify features that could assist in the differential diagnosis of TF versus other benign and malignant lesions.

Methods: We collected clinical data from 24 patients with histologically confirmed TF between February 2019 and June 2024.

View Article and Find Full Text PDF

Thermal cracking is one of the serious issues that deteriorates the processibility of laser powder bed fusion (LPBF) high-strength aluminum components. To date, the effects of processing parameters on crack formation are still not well understood. The purpose of this study is to understand the correlation between the thermal cycle and the hot cracking during LPBF of Al-Cu-Mg-Mn alloys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!