Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Artificial intelligence (AI) and machine learning (ML) are important tools across many fields of health and medical research. Pharmacoepidemiologists can bring essential methodological rigor and study design expertise to the design and use of these technologies within healthcare settings. AI/ML-based tools also play a role in pharmacoepidemiology research, as we may apply them to answer our own research questions, take responsibility for evaluating medical devices with AI/ML components, or participate in interdisciplinary research to create new AI/ML algorithms. While epidemiologic expertise is essential to deploying AI/ML responsibly and ethically, the rapid advancement of these technologies in the past decade has resulted in a knowledge gap for many in the field. This article provides a brief overview of core AI/ML concepts, followed by a discussion of potential applications of AI/ML in pharmacoepidemiology research, and closes with a review of important concepts across application areas, including interpretability and fairness. This review is intended to provide an accessible, practical overview of AI/ML for pharmacoepidemiology research, with references to further, more detailed resources on fundamental topics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pds.70041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!