Enterotoxigenic Escherichia coli (ETEC) stands as a prevalent bacterial cause of global diarrheal incidents. ETEC's primary virulence factors encompass the B subunit of the Heat Labile Enterotoxin, along with the adhesion factors CfaB and EtpA. In this study, we isolated IgY antibodies against the three virulence factors individually, in pairs, and as triple cocktails. The in vitro efficacy of these IgY antibodies was examined, focusing on inhibiting heat-labile enterotoxin (LT) toxin cytotoxicity and impeding ETEC adherence to HT29 cells. Assessing the impact of IgY-treated bacteria on intestinal epithelial cells utilized the standard ileal loop method. Results demonstrated that the anti-LTB IgY antibody at 125 µg/ml and IgY antibodies from double and tertiary cocktails at 200 µg/ml effectively inhibited LT toxin attachment to the Y1 cell line. Pre-incubation of HT29 intestinal cells with specific IgYs reduced bacterial attachment by 59.7%. In the ileal loop test, toxin neutralization with specific IgYs curtailed the toxin's function in the intestine, leading to a 74.8% reduction in fluid accumulation compared to control loops. These findings suggest that egg yolk immunoglobulins against recombinant proteins LTB, CfaB, and EtpA, either individually or in combination, hold promise as prophylactic antibodies to impede the functioning of ETEC bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s42770-024-01554-0 | DOI Listing |
Vaccines (Basel)
December 2024
Prophyl Kft., 7700 Mohács, Hungary.
Background/objectives: The ongoing COVID-19 pandemic has underscored the need for alternative prophylactic measures, particularly for populations for whom vaccines may not be effective or accessible. This study aims to evaluate the efficacy of intranasally administered IgY antibodies derived from hen egg yolks as a protective agent against SARS-CoV-2 infection in Syrian golden hamsters, a well-established animal model for COVID-19.
Methods: Hens were immunized with the spike protein of SARS-CoV-2 to generate IgY antibodies.
Foods
December 2024
Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China.
Chicken yolk immunoglobulin (IgY) is a natural immunologically active antibody extracted from egg yolk and can be used as a natural dietary supplement for the treatment of inflammation and damage to the intestines. In our study, IgY was embedded in a double emulsion (W/O/W; DE) to explore the therapeutic effect of the embedded IgY on Lipopolysaccharide (LPS)-induced jejunal injury in mice. The results showed that W/O/W-embedded IgY as a dietary supplement (IgY + DE) attenuated LPS-induced damage to mouse small intestinal structures and protected the integrity of the jejunal mucosal barrier.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
Benzo[a]pyrene (B[a]P) is a hazardous polycyclic aromatic hydrocarbon that accumulates in several environmental matrices as a result of incomplete combustion. Its presence, carcinogenic properties, and tendency for bioaccumulation provide significant risks to human health and the environment. The objective of this study is to create an immunoassay for the detection of benzo[a]pyrene utilizing immunoglobulin Y antibodies.
View Article and Find Full Text PDFPoult Sci
December 2024
School of Agriculture and Food Systems, West Virginia University, Morgantown, WV 26506.
Serotonin is a potent immunomodulatory neurohormone. Activities of the serotonergic and immune systems are often reported together in poultry studies with unidirectional analyses focused on serotonergic signaling mediating immune response. Considering serotonin's relevance across a range of immune-related poultry topics, elucidation of whether the immune system affects the serotonergic system can provide valuable insights into the bi-directionality of poultry neuroendocrine-immune interactions.
View Article and Find Full Text PDFNat Commun
December 2024
Engineering Biology Research Center, Kobe University, Kobe, Japan.
Inducible promoters are essential for precise control of target gene expression in synthetic biological systems. However, engineering eukaryotic promoters is often more challenging than engineering prokaryotic promoters due to their greater mechanistic complexity. In this study, we describe a simple and reliable approach for constructing strongly inducible synthetic promoters with minimum leakiness in yeasts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!