A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3051
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3053

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3053
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

3D printed gelatin/PTMC core/shell scaffolds with NIR laser-tuned drug/biomolecule release for cancer therapy and uterine regeneration. | LitMetric

3D printed gelatin/PTMC core/shell scaffolds with NIR laser-tuned drug/biomolecule release for cancer therapy and uterine regeneration.

Int J Biol Macromol

Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China. Electronic address:

Published: December 2024

Surgical resection is an efficient treatment for cancerous tissues and uterine fibroids in the women uterus. However, the insufficiency of clinical interventions could result in tumor recurrence, and the defective tissues remained would cause intrauterine adhesions (IUAs) and further affect reproduction capacity. In this study, 3D printed hydrogel/poly(l-lactide-co-trimethylene carbonate) (PLLA-co-TMC, "PTMC" in short) core/shell scaffolds with NIR-tuned doxorubicin hydrochloride (DOX) and estradiol (E2) dual release were designed and fabricated for cancer therapy and uterine regeneration. Gelatin (Gel) and DOX were homogeneously mixed and then 3D printed to form Gel-DOX scaffolds. Gel-DOX scaffolds were then immersed in PTMC-PDA@E2 solution to fabricate Gel-DOX/PTMC-PDA@E2 core/shell scaffolds. Consequently, Gel-DOX/PTMC-PDA@E2 scaffolds could release DOX and E2 in a chronological manner, firstly delivering DOX assisted by phototherapy (PTT) to effectively kill Hela cells and then sustainably releasing E2 to promote uterine tissue regeneration. In vitro experiments showed that core/shell scaffolds exhibited excellent anticancer efficiency through the synergy of DOX release and hyperthermia ablation. Moreover, E2 could be sustainably released for over 28 days in vitro to promote the proliferation of bone marrow-derived mesenchymal stem cells (BMSCs). The novel Gel-DOX/PTMC-PDA@E2 core/shell scaffolds have therefore exhibited potential promise for the treatment of cancer therapy and uterine regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.137193DOI Listing

Publication Analysis

Top Keywords

core/shell scaffolds
20
cancer therapy
12
therapy uterine
12
uterine regeneration
12
scaffolds
8
gel-dox scaffolds
8
gel-dox/ptmc-pda@e2 core/shell
8
scaffolds exhibited
8
core/shell
5
uterine
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!