Purpose: Osteoporosis, affecting over 200 million individuals, often remains unrecognized and untreated, increasing the risk of fractures in older adults. Osteoporosis is typically diagnosed with bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA). This study aims to develop DeepDXA-Hand, a deep learning model using the efficient CNN-based deep learning architecture, for opportunistic osteoporosis screening from hand radiographs.
Methods: DeepDXA-Hand utilizes a CNN-based, HarDNet, approach to predict BMD non-invasively. A total of 10,351 hand radiographs and DXA pairs were used for model training and validation. The model's interpretability was enhanced using GradCAM for hotspot analysis to determine the model's attention areas.
Results: The predicted and ground truth BMD were significantly correlated with a correlation coefficient of 0.745. For binary classification of osteoporosis, DeepDXA-Hand demonstrated a sensitivity of 0.73, specificity of 0.83, and accuracy of 0.80, indicating its clinical potential. The model mainly focused on the carpal bones, such as the capitate, trapezoid, hamate, triquetrum, and the head of the second metacarpal bone, suggesting these areas provide radiological features for inferring BMD.
Conclusion: DeepDXA-Hand shows potential for the early detection of osteoporosis with high sensitivity and specificity. Further studies should explore its utility in predicting fracture risks.
Mini Abstract: Osteoporosis affects millions and often goes undetected and untreated. DeepDXA-Hand, a HarDNet-based deep learning model, predicted bone mineral density with a correlation of 0.745 and classified osteoporosis with 0.80 accuracy. This model enhances early detection and has significant clinical potential as osteoporosis opportunistic screening tool.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2024.117317 | DOI Listing |
Brain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFPediatr Cardiol
January 2025
Department of Infectious Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No. 1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China.
Kawasaki disease (KD) is a febrile vasculitis disorder, with coronary artery lesions (CALs) being the most severe complication. Early detection of CALs is challenging due to limitations in echocardiographic equipment (UCG). This study aimed to develop and validate an artificial intelligence algorithm to distinguish CALs in KD patients and support diagnostic decision-making at admission.
View Article and Find Full Text PDFNeuroradiology
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.
Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.
Microsc Res Tech
January 2025
AIDA Lab. College of Computer and Information Sciences (CCIS), Prince Sultan University, Riyadh, Saudi Arabia.
The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Department of Radiology, University of Missouri, Columbia, Missouri, USA.
Purpose: The aim of the work is to develop a cascaded diffusion-based super-resolution model for low-resolution (LR) MR tagging acquisitions, which is integrated with parallel imaging to achieve highly accelerated MR tagging while enhancing the tag grid quality of low-resolution images.
Methods: We introduced TagGen, a diffusion-based conditional generative model that uses low-resolution MR tagging images as guidance to generate corresponding high-resolution tagging images. The model was developed on 50 patients with long-axis-view, high-resolution tagging acquisitions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!