The CCAAT enhancer binding protein alpha (CEBPA) is crucial for myeloid differentiation and the balance of haematopoietic stem and progenitor cell (HSPC) quiescence and self-renewal, and its dysfunction can drive leukemogenesis. However, its role in HSPC generation has not been fully elucidated. Here, we utilized various zebrafish mutants to investigate the function of Cebpa in the HSPC compartment. Co-localization analysis showed that expression is enriched in nascent HSPCs. Complete loss of Cebpa function resulted in a significant reduction in early HSPC generation and the overall HSPC pool during embryonic haematopoiesis. Interestingly, while myeloid differentiation was impaired in N-terminal mutants expressing the truncated zP30 protein, the number of HSPCs was not affected, indicating a redundant role of Cebpa P42 and P30 isoforms in HSPC development. Additionally, epistasis experiments confirmed that Cebpa functions downstream of Runx1 to regulate HSPC emergence. Our findings uncover a novel role of Cebpa isoforms in HSPC generation and maintenance, and provide new insights into HSPC development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537755 | PMC |
http://dx.doi.org/10.1098/rsob.240215 | DOI Listing |
Cell Mol Life Sci
December 2024
Research Service, VA Northern California Health Care System, Mather, CA, USA.
Neoadjuvant therapy (NAT) has been studied in clinically localized prostate cancer (PCa) to improve the outcomes from radical prostatectomy (RP) by 'debulking' of high-risk PCa; however, using androgen deprivation therapy (ADT) at this point risks castration resistant PCa (CRPC) clonal proliferation. Our goal is to identify alternative NAT that reduce hormone sensitive PCa (HSPC) without affecting androgen receptor (AR) transcriptional activity. PCa is associated with increased expression and activation of the epidermal growth factor receptor (EGFR) family, including HER2 and ErbB3.
View Article and Find Full Text PDFMol Ther
December 2024
Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. Electronic address:
Diamond-Blackfan anemia syndrome (DBAS) is an inherited bone marrow failure disorder caused by haploinsufficiency of ribosomal protein genes, most commonly RPS19. Limited access to patient hematopoietic stem/progenitor cells (HSPCs) is a major roadblock to developing novel therapies for DBAS. We developed a novel self-inactivating third-generation RPS19-encoding lentiviral vector (LV), termed "SJEFS-S19", for DBAS gene therapy.
View Article and Find Full Text PDFCancer Sci
December 2024
Department of Urology, Kindai University School of Medicine, Osaka-Sayama, Japan.
Gut microbiota plays a crucial role in the development and progression of prostate cancer, with previous studies indicating that certain bacterial taxa are more abundant in castration-resistant prostate cancer (CRPC) compared to hormone-sensitive prostate cancer (HSPC). Notably, the composition of gut microbiota can vary significantly by geographic region, and Japanese individuals have a distinct microbial profile. However, research exploring these differences within Japanese populations remains limited.
View Article and Find Full Text PDFBlood Cancer Discov
December 2024
Children's Hospital of Los Angeles, Los Angeles, CA, United States.
CAR T-cell therapy has remarkably succeeded in treating lymphoblastic leukemia. However, its success in AML remains elusive due to the risk of on-target off-tumor toxicity to hematopoietic stem and progenitor cells (HSPC) and insufficient T-cell persistence and longevity. Using a SynNotch circuit, we generated a high-precision "IF-THEN" gated logical circuit against the combination of CD33 and CD123 AML antigens and demonstrated anti-tumor efficacy against AML cell lines and patient-derived xenografts.
View Article and Find Full Text PDFSignal Transduct Target Ther
December 2024
The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!