Next steps for targeted protein degradation.

Cell Chem Biol

Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Pharmacology, Yale University, New Haven, CT 06511, USA. Electronic address:

Published: October 2024

Targeted protein degradation (TPD) has greatly advanced as a therapeutic strategy in the past two decades, and we are on the cusp of rationally designed protein degraders reaching clinical approval. Offering pharmacological advantages relative to occupancy-driven protein inhibition, chemical methods for regulating biomolecular proximity have provided opportunities to tackle disease-related targets that were undruggable. Despite the pre-clinical success of designed degraders and existence of clinical therapies that serendipitously utilize TPD, expansion of the TPD toolbox is necessary to identify and characterize the next generation of molecular degraders. Here we highlight three areas for continued growth in the field that should be prioritized: expansion of TPD platform with greater spatiotemporal precision, increased throughput of degrader synthesis, and optimization of cooperativity in chemically induced protein complexes. The future is bright for TPD in medicine, and we expect that innovative approaches will increase therapeutic applications of proximity-induced pharmacology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2024.10.004DOI Listing

Publication Analysis

Top Keywords

targeted protein
8
protein degradation
8
expansion tpd
8
protein
5
tpd
5
steps targeted
4
degradation targeted
4
degradation tpd
4
tpd greatly
4
greatly advanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!