The decline in reproductive efficiency during post-peak period of production in poultry species holds significant economic implications. This study aimed to investigate the productive and reproductive performance of Japanese quails across distinct production stages and the association between these parameters and some genes expression and histometric alterations within the reproductive system. A total of 180 quails from a commercial flock were selected at varying egg production stages, including young, mature, and old, with 45 female and 15 male quails allocated to each group. The quails were maintained for six weeks. During recording period, daily records of egg production and egg weight were recorded. Additionally, oviduct histometric and Follicle biometric measurements, along with mRNA transcript abundance assessments related to follicular selection and yolk accumulation, were conducted on the oviduct, ovary, and small yellow follicles at the end of the experimental period. The results revealed a decrease in egg production in the old group compared to the young and mature groups (P < 0.05); meanwhile, the old group had the highest egg weight, and F1 follicle weight (P < 0.05). Additionally, the number of prehierarchical follicles was lower in the mature and old groups compared to the young group (P < 0.05). The lowest oviduct length, primary and secondary fold height, and thickness of the isthmus and magnum were noted in the old group (P < 0.05). Fertility and hatchability were lower in the old group compared to the other groups (P < 0.05). The mRNA transcript abundance of anti-Mullerian hormone (AMH), was highest in the old group and lowest in the young group (P < 0.05), while the mRNA transcript abundance of bone morphogenetic protein 15 (BMP15) was higher in the mature group compared to the other groups (P < 0.05). Additionally, the young quails had the highest occludin (OCLN) mRNA transcript abundance compared to other groups (P < 0.05). Overall, the study findings indicate decreased production and reproductive performance, as well as reduced hatchling quality over the production period, attributed to a declining number of follicles, noncooperative gene expression related to follicle selection and yolk accumulation, and diminishing oviduct fold size.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570721 | PMC |
http://dx.doi.org/10.1016/j.psj.2024.104499 | DOI Listing |
Sci Rep
December 2024
Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China.
Pseudouridine (Ψ) is a post-transcriptional modifier of RNA, often referred to as the 'fifth nucleotide' owing to its regulatory role in various biological functions as well as because of its significant involvement in the pathogenesis of human cancer. In recent years, research has revealed various Ψ modifications in different RNA types, including messenger RNA, transfer RNA, ribosomal RNA, small nuclear RNA, and long noncoding RNA. Pseudouridylation can significantly alter RNA structure and thermodynamic stability, as the Ψ-adenine (A) base pair is more stable than the typical uridine (U)-A base pair is due to its structural similarity to adenine.
View Article and Find Full Text PDFIran J Biotechnol
July 2024
Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Background: is the causal agent of Fusarium Head Blight (FHB) on wheat and produces deoxynivalenol (DON), known to cause extreme human and animal toxicosis. This species' genome contains genes involved in plant-pathogen interactions and regulated by chromatin modifications. Moreover, histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), have been employed to study gene transcription regulation because they can convert the structure of chromatin.
View Article and Find Full Text PDFIran J Biotechnol
July 2024
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Objectives: This study investigated the impact of hypoxic preconditioning on the survival and oxidative stress tolerance of nestin-expressing hair follicle stem cells (hHFSCs) and SH-SY5Y neuroblastoma cells, two crucial cell types for central nervous system therapies. The study also examined the relative expression of three key genes, HIF1α, BDNF, and VEGF following hypoxic preconditioning.
Materials And Methods: hHFSCs were isolated from human hair follicles, characterized, and subjected to hypoxia for up to 72 hours.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!