Engineered neural tissue (EngNT) is a stabilised aligned cellular hydrogel that offers a potential alternative to the nerve autograft for the treatment of severe peripheral nerve injury. This work aimed to automate the production of EngNT, to improve the feasibility of scalable manufacture for clinical translation. Endothelial cells were used as the cellular component of the EngNT, with the formation of endothelial cell tube-like structures mimicking the polarised vascular structures formed early on in the natural regenerative process. Gel aspiration-ejection for the production of EngNT was automated by integrating a syringe pump with a robotic positioning system, using software coded in Python to control both devices. Having established the production method and tested mechanical properties, the EngNT containing human umbilical vein endothelial cells (EngNT-HUVEC) was characterised in terms of viability and alignment, compatibility with neurite outgrowth from rat dorsal root ganglion neurons and formation of endothelial cell networks. EngNT-HUVEC manufactured using the automated system contained viable and aligned endothelial cells, which developed into a network of multinucleated endothelial cell tube-like structures inside the constructs and an outer layer of endothelialisation. The EngNT-HUVEC constructs were made in various sizes within minutes. Constructs provided support and guidance to regenerating neurites. This work automated the formation of EngNT, facilitating high throughput manufacture at scale. The formation of endothelial cell tube-like structures within stabilised hydrogels provides an engineered tissue with potential for use in nerve repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1758-5090/ad8efd | DOI Listing |
Viruses
November 2024
Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.
Unlabelled: Di(2-ethhylhexyl) phthalate (DEHP) is a common plastic rubberizer. DEHP leaches from plastic matrices and is under increasing scrutiny as numerous studies have linked it to negative human health manifestations. Coxsackievirus B3 (CVB) is a human pathogen that typically causes subclinical infections but can sometimes cause severe diseases such as pancreatitis, myocarditis, and meningoencephalitis.
View Article and Find Full Text PDFNutrients
December 2024
Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia.
Importance: Although prolonged fasting has become increasingly popular, the favourable biological adaptations and possible adverse effects in humans have yet to be fully elucidated.
Objective: To investigate the effects of a three-day water-only fasting, with or without exercise-induced glycogen depletion, on autophagy activation and the molecular pathways involved in cellular damage accumulation and repair in healthy humans.
Design: A randomised, single-centre, two-period, two-sequence crossover trial.
Nutrients
December 2024
Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia.
Background: Obesity is a risk factor for developing cardiovascular diseases (CVDs) by impairing normal vascular function. Natural products are gaining momentum in the clinical setting due to their high efficacy and low toxicity. extract (CFE) has been shown to control appetite and promote weight loss; however, its effect on vascular function remains poorly understood.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
Preeclampsia (PE) is a serious complication of pregnancy linked to endothelial dysfunction and an imbalance in the gut microbiota. While (AKK) has shown promise in alleviating PE symptoms, the use of live bacteria raises safety concerns. This study explored the potential of pasteurized (pAKK) as a safer alternative for treating PE, focusing on its effects on endothelial function and metabolic regulation.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
Human dental pulp stem cells (HDPSCs) with multi-lineage differentiation potential and migration ability are required for HDPSC-based bone and dental regeneration. Hispidulin is a naturally occurring flavonoid with diverse pharmacological activities, but its effects on biological properties of HDPSCs remain unknown. Therefore, we investigated the effects of hispidulin on the differentiation potential and migration ability of HDPSCs and elucidated their underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!