Objective: Electronic health record systems have made it possible for clinicians to use previously encountered similar cases to support clinical decision-making. However, most studies for similar case retrieval were based on single-modal data. The existing studies on cross-modal clinical case retrieval were limited. We aimed to develop a CRoss-Modal Retrieval (CRMR) model to retrieve similar clinical cases recorded in different data modalities.
Materials And Methods: The publically available Medical Information Mart for Intensive Care-Chest X-ray (MIMIC-CXR) dataset was used for model development and testing. The CRMR model was designed as a modular model containing two feature extraction models, two feature transformation models, one feature transformation optimization model, and one case retrieval model. The ability to retrieve similar clinical cases recorded in different data modalities was facilitated by the use of contrastive deep learning and k-nearest neighbor search.
Results: The average retrieval precision, denoted as AP@k, of the developed CRMR model, were 76.9 %@5, 76.7 %@10, 76.5 %@20, 76.3 %@50, and 77.9 %@100, respectively. Here k is the number of similar cases returned after retrieval. The average retrieval time varied from 0.013 ms to 0.016 ms with k varying from 5 to 100. Moreover, the model can retrieve similar cases with the same multiple radiographic manifestations as the query case.
Discussion: The CRMR model has shown promising cross-modal retrieval performance in clinical case analysis, with the potential for future scalability and improvement in handling diverse disease types and data modalities. The CRMR model has promising potential to aid clinicians in making optimal and explainable clinical decisions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmedinf.2024.105680 | DOI Listing |
Front Neurol
December 2024
Institut de Recherche Oto-Neurologique (IRON), Paris, France.
Introduction: While most head movements in daily life are active, most tools used to assess vestibular deficits rely on passive head movements. A single gain value is not sufficient to quantify gaze stabilization efficiency during active movements in vestibular deficit patients. Moreover, during active gaze shifts, anticipatory mechanisms come into play.
View Article and Find Full Text PDFAmyotroph Lateral Scler Frontotemporal Degener
November 2024
INSERM Imaging Brain & Neuropsychiatry iBraiN U1253, Team Neurogenomic and Neuronal Pathophysiology, Université de Tours, Tours, France.
Objective: Over the past years, interest in the role of gut microbiota in neurodegenerative diseases has emerged. Despite numerous publications over the past decade, both in human and pre-clinical studies, there is no clear consensus on the microbiota's role or involvement in ALS. Few studies on mouse models of ALS highlighted a correlation between specific bacteria species and the prognostic or severity of the disease.
View Article and Find Full Text PDFInt J Med Inform
January 2025
National Institute of Health Data Science, Peking University, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, Zhejiang, China. Electronic address:
Objective: Electronic health record systems have made it possible for clinicians to use previously encountered similar cases to support clinical decision-making. However, most studies for similar case retrieval were based on single-modal data. The existing studies on cross-modal clinical case retrieval were limited.
View Article and Find Full Text PDFMol Psychiatry
October 2024
MOODS Team, INSERM UMR 1018, CESP, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, F-94275, France.
Major Depressive Disorder (MDD) is the leading cause of disability worldwide. Genetic factors influence the effect of its main treatment option, antidepressant drugs (ATD). The GRIK4 rs1954787(T>C) genetic polymorphism was associated with response following 1-3 months of ATD treatment in some studies, but not others.
View Article and Find Full Text PDFTissue Eng Part A
September 2024
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS-UMR7104, INSERM U1258, Université de Strasbourg, Illkirch, France.
Odontogenesis, the intricate process of tooth development, involves complex interactions between oral ectoderm epithelial cells and ectomesenchymal cells derived from the cephalic neural crest, regulated by major signaling pathways. Dental developmental anomalies provide valuable insights for the clinical diagnosis of rare diseases. More than 30% of patients with rare diseases who undergo molecular analysis suffer from diagnostic errancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!