Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acute ischemic stroke (AIS) remains a global health challenge, leading to long-term functional disabilities without timely intervention. Spatio-temporal (4D) Computed Tomography Perfusion (CTP) imaging is crucial for diagnosing and treating AIS due to its ability to rapidly assess the ischemic core and penumbra. Although traditionally used to assess acute tissue status in clinical settings, 4D CTP has also been explored in research for predicting stroke tissue outcomes. However, its potential for predicting functional outcomes, especially in combination with clinical metadata, remains unexplored. Thus, this work aims to develop and evaluate a novel multimodal deep learning model for predicting functional outcomes (specifically, 90-day modified Rankin Scale) in AIS patients by combining 4D CTP and clinical metadata. To achieve this, an intermediate fusion strategy with a cross-attention mechanism is introduced to enable a selective focus on the most relevant features and patterns from both modalities. Evaluated on a dataset comprising 70 AIS patients who underwent endovascular mechanical thrombectomy, the proposed model achieves an accuracy (ACC) of 0.77, outperforming conventional late fusion strategies (ACC = 0.73) and unimodal models based on either 4D CTP (ACC = 0.61) or clinical metadata (ACC = 0.71). The results demonstrate the superior capability of the proposed model to leverage complex inter-modal relationships, emphasizing the value of advanced multimodal fusion techniques for predicting functional stroke outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2024.103381 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!