AI Article Synopsis

  • Defect engineering is essential for improving the performance of advanced devices, and ion beam irradiation is an effective method for creating controlled defects in materials.
  • This study focuses on how nitrogen ion irradiation affects the electrochemical properties of zinc oxide (ZnO) thin-film electrodes, revealing increased disorder and new defect states due to oxygen vacancies.
  • Results show that irradiated electrodes exhibit higher peak currents and lower charge transfer resistance, along with enhanced AC conductivity, which indicates improved performance for applications like batteries and supercapacitors.

Article Abstract

Defect engineering serves as a crucial technique for enhancing the performance of advanced next-generation devices. Ion beam irradiation stands out as a highly promising method for introducing defects in a controlled manner. This study investigates the impact of nitrogen ion (N) irradiation-induced defects on the electrochemical behavior of ZnO thin-film electrode-electrolyte interface. The oxygen vacancy defects were introduced and tuned by varying the fluence of ion irradiation. The increased Urbach energy in the irradiated samples confirms the enhanced disorder. Photoluminescence data show the emergence of new defect states upon irradiation. The behavior of the ZnO thin-film electrode-electrolyte interface was studied using cyclic voltammetry and electrochemical impedance spectroscopy. At a fixed scan rate, the enhanced peak current was observed in cyclic voltammetry in N Irradiated electrodes. Furthermore, reduced charge transfer resistance was observed in the case of irradiated electrodes. To unravel the underlying mechanism, we analyze the AC conductivity, which shows varying dependency on the frequency. It shows the existence of multiple ion-ion correlations in irradiated electrodes. Furthermore, the AC conductivity in the entire frequency region is enhanced significantly. Dielectric permittivity spectra suggest low-frequency dipole interactions and increased dielectric losses after irradiation, indicating non-Debye type relaxation processes. Understanding irradiation-induced changes will help engineer thin film electrodes for batteries, supercapacitors, and other electrochemical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c02807DOI Listing

Publication Analysis

Top Keywords

behavior zno
12
irradiated electrodes
12
ion irradiation
8
electrochemical behavior
8
thin film
8
zno thin-film
8
thin-film electrode-electrolyte
8
electrode-electrolyte interface
8
cyclic voltammetry
8
irradiation
5

Similar Publications

In this research, activated carbon from banana peel (BPAC) was prepared by calcination (600 °C) method. Nano composites MO@BPAC (MO=NiO, CuO and ZnO) were prepared and then were characterized by XRD, FTIR, FESM, EDX, BETand TGA methods. Formation of MO@BPAC nanocomposites was confirmed by analysis methods.

View Article and Find Full Text PDF

In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.

View Article and Find Full Text PDF

Temperature Dependence on Microstructure, Crystallization Orientation, and Piezoelectric Properties of ZnO Films.

Sensors (Basel)

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • The study examines how varying annealing temperatures affect the microstructure, chemical composition, phase structure, and piezoelectric properties of ZnO films.
  • Findings indicate that while annealing generally increases grain size and improves crystal structure, too much heat can degrade the structure due to changes in oxygen content.
  • ZnO films annealed at 400 °C show the best piezoelectric performance, indicating the importance of optimizing annealing conditions for sensor applications.
View Article and Find Full Text PDF
Article Synopsis
  • The study focused on creating and testing Cobalt-doped zinc oxide nanoparticles as a photocatalyst for degrading the antibiotic ciprofloxacin (CIPF) under visible LED light.
  • It was found that 10% Cobalt-doped ZnO nanoparticles were the most effective, achieving over 99% degradation of CIPF in just 90 minutes, and maintained their efficiency across three cycles of use.
  • The research also optimized the conditions for maximum degradation efficiency using statistical methods and simulated data using Artificial Neural Networks, achieving a strong correlation for the model’s accuracy.
View Article and Find Full Text PDF

Selective adsorption of unmethylated DNA on ZnO nanowires for separation of methylated DNA.

Lab Chip

January 2025

Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.

DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!