Defect engineering serves as a crucial technique for enhancing the performance of advanced next-generation devices. Ion beam irradiation stands out as a highly promising method for introducing defects in a controlled manner. This study investigates the impact of nitrogen ion (N) irradiation-induced defects on the electrochemical behavior of ZnO thin-film electrode-electrolyte interface. The oxygen vacancy defects were introduced and tuned by varying the fluence of ion irradiation. The increased Urbach energy in the irradiated samples confirms the enhanced disorder. Photoluminescence data show the emergence of new defect states upon irradiation. The behavior of the ZnO thin-film electrode-electrolyte interface was studied using cyclic voltammetry and electrochemical impedance spectroscopy. At a fixed scan rate, the enhanced peak current was observed in cyclic voltammetry in N Irradiated electrodes. Furthermore, reduced charge transfer resistance was observed in the case of irradiated electrodes. To unravel the underlying mechanism, we analyze the AC conductivity, which shows varying dependency on the frequency. It shows the existence of multiple ion-ion correlations in irradiated electrodes. Furthermore, the AC conductivity in the entire frequency region is enhanced significantly. Dielectric permittivity spectra suggest low-frequency dipole interactions and increased dielectric losses after irradiation, indicating non-Debye type relaxation processes. Understanding irradiation-induced changes will help engineer thin film electrodes for batteries, supercapacitors, and other electrochemical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c02807 | DOI Listing |
Heliyon
January 2025
Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran.
In this research, activated carbon from banana peel (BPAC) was prepared by calcination (600 °C) method. Nano composites MO@BPAC (MO=NiO, CuO and ZnO) were prepared and then were characterized by XRD, FTIR, FESM, EDX, BETand TGA methods. Formation of MO@BPAC nanocomposites was confirmed by analysis methods.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom, 32511, Egypt.
In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Sci Rep
January 2025
Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
Lab Chip
January 2025
Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.
DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!