Theoretical Calculation of Dissolved Gas in Transformer Oil Using the Gas Sensitive Properties of Sc- and Ti-Modified ZrS.

Langmuir

Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China.

Published: November 2024

To guarantee the secure functioning of the complete power system and minimize the risks associated with oil-filled transformers during their operation, it is greatly important to carry out gas sensing studies of dissolved gases in transformer research. Through the utilization of first-principles density functional theory calculations, the adsorption energy, electronic characteristics, and recuperation duration of ZrS modified with Sc and Ti were examined. The results show that compared to those of the initial ZrS material, the doping of TM atoms Sc and Ti significantly improved the adsorption properties of the material, and the adsorption of CO and CH showed chemisorption. The adsorption capacity for gases decrease in the following order: CH > CO > H. The calculated recovery times indicate that Sc-ZrS and Ti-ZrS were ideal carbon monoxide sensing materials under the specific conditions. The results of this work can establish a fundamental rationale for the use of ZrS in sensing the conditions of oil-immersed transformers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c03424DOI Listing

Publication Analysis

Top Keywords

theoretical calculation
4
calculation dissolved
4
dissolved gas
4
gas transformer
4
transformer oil
4
oil gas
4
gas sensitive
4
sensitive properties
4
properties sc-
4
sc- ti-modified
4

Similar Publications

Bone is one of the hardest tissues in the human body, but it can undergo microcracks under long-term and periodic mechanical loads. The Newton iterative method was used to calculate the steady state, and the effects of different inlet and outlet pressures, trabecular gap width and height, and microcrack's depth and width on the fluid shear stress (FSS) were studied, and the gradient of FSS inside the microcrack was analyzed. The results show that the pressure difference and trabecular gap heigh are positively correlated with the FSS (the linear correlation coefficients were 0.

View Article and Find Full Text PDF

Predicting reaction barriers for arbitrary configurations based on only a limited set of density functional theory (DFT) calculations would render the design of catalysts or the simulation of reactions within complex materials highly efficient. We here propose Gaussian process regression (GPR) as a method of choice if DFT calculations are limited to hundreds or thousands of barrier calculations. For the case of hydrogen atom transfer in proteins, an important reaction in chemistry and biology, we obtain a mean absolute error of 3.

View Article and Find Full Text PDF

Robust interfaces in anodes play a crucial role in boosting sodium-ion battery (SIB) performance. However, the fragile interfaces constructed by a two-step synthesis or artificial stack are prone to be destroyed during the charging/discharging processes, which significantly reduces the lifetime of SIBs. Here, a facile construction strategy is developed to produce robust interfaces in hollow sphere-like CoSe/nitrogen-doped carbon (HS-CoSe/NC) using intrinsic Co, N, C in metal-organic framework as precursors, which enhance the electron/ion diffusion kinetics.

View Article and Find Full Text PDF

A series of Ni complexes bearing a redox and acid-base noninnocent tetraamido macrocyclic ligand, H-(TAML-4) {H-(TAML-4) = 15,15-dimethyl-5,8,13,17-tetrahydro-5,8,13,17-tetraaza-dibenzo[]cyclotridecene-6,7,14,16-tetraone}, with formal oxidation states of Ni, Ni, and Ni were synthesized and characterized structurally and spectroscopically. The X-ray crystallographic analysis of the Ni complexes revealed a square planar geometry, and the [Ni(TAML-4)] complex with the formal oxidation state of Ni was characterized to be [Ni(TAML-4)] with the oxidation state of the Ni ion and the one-electron oxidized TAML-4 ligand, TAML-4. The Ni oxidation state and the TAML-4 radical cation ligand, TAML-4, were supported by X-ray absorption spectroscopy and density functional theory calculations.

View Article and Find Full Text PDF

Weak Covalent Bonds and Mechanochemistry for Synergistic Self-Strengthening of Elastomers.

J Am Chem Soc

January 2025

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, West Campus, 2# Linggong Road, Dalian 116024, China.

The macroscopic properties of elastomers are intimately linked to their molecular reactivity and mechanisms. Here, we propose a new strategy for designing strengthening materials based on the synergy of weak covalent bonds and mechanochemistry. After mechanical treatment, the failure strength and toughness of the elastomer increased from 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!