Exposure to PFAS such as GenX (HFPO dimer acid) has become increasingly common due to the replacement of older generation PFAS in manufacturing processes. While neurodegenerative and developmental effects of legacy PFAS exposure have been studied in depth, there is a limited understanding specific to the effects of GenX exposure. To investigate the effects of GenX exposure, we exposed to GenX and assessed the motor behavior and performed quantitative proteomics of fly brains to identify molecular changes in the brain. Additionally, metabolic network-based analysis using the Drosophila1 model unveiled a potential link between GenX exposure and neurodegeneration. Since legacy PFAS exposure has been linked to Parkinson's disease (PD), we compared the proteome data sets between GenX-exposed flies and a fly model of PD expressing human α-synuclein. Considering the proteomic data- and network-based analyses that revealed GenX may be regulating GABA-associated pathways and the immune system, we next explored the effects of GenX on astrocytes, as astrocytes in the brain can regulate GABA. An array of assays demonstrated GenX exposure may lead to mitochondrial dysfunction and neuroinflammatory response in astrocytes, possibly linking non-cell autonomous neurodegeneration to the motor deficits associated with GenX exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580177PMC
http://dx.doi.org/10.1021/acs.est.4c05472DOI Listing

Publication Analysis

Top Keywords

genx exposure
24
effects genx
12
genx
10
exposure
9
legacy pfas
8
pfas exposure
8
comparative proteomics
4
proteomics highlights
4
highlights genx
4
exposure leads
4

Similar Publications

While the occurrence of GenX, a novel alternative for perfluorooctanoic acid (PFOA), in the environment and its cytotoxicity at high concentrations to thyroid cells are well documented, limited information is available regarding its impact at low concentrations. GenX is detected to be as low as 0.001 ng/mL in drinking water and 0.

View Article and Find Full Text PDF

Lower toxicity of HFPO-DA compared to its predecessor PFOA to the earthworm Eisenia fetida: Evidence from oxidative stress and transcriptomic analysis.

J Hazard Mater

December 2024

College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China. Electronic address:

Hexafluoropropylene oxide dimer acid (HFPO-DA), an emerging perfluoroalkyl substance (PFAS) that is replacing traditional PFASs, has a wide range of industrial applications and has been detected globally in the environment. However, it remains unclear whether HFPO-DA, is genuinely less toxic than perfluorooctanoic acid (PFOA) in terms of soil environmental hazards. Therefore, this study aimed to compare differences in toxicity between PFOA and its substitute, HFPO-DA, in a common species of earthworm, Eisenia fetida.

View Article and Find Full Text PDF

Sub-acute exposure of sea urchin (Strongylocentrotus intermedius) to environmentally relevant concentrations of PFOA and GenX influences gonadal development.

Comp Biochem Physiol C Toxicol Pharmacol

December 2024

Shandong Blue Ocean Technology Co., Ltd., Yantai 261413, China. Electronic address:

Perfluorooctanoic acid (PFOA) and its substitute, hexafluoropropylene oxide dimer acid (GenX), are widely used perfluorinated compounds (PFCs) that pose significant risks to marine ecosystems. However, the specific impacts of these contaminants on marine invertebrates, particularly echinoderms, remain poorly understood. Strongylocentrotus intermedius, a globally significant benthic aquacultural species, may be potentially affected by PFCs.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are a class of long-lasting chemicals with widespread use and environmental persistence that have been increasingly studied for their detrimental impacts to human and animal health. Several major PFAS species are linked to neurodevelopmental toxicity. For example, epidemiological studies have associated prenatal exposure to perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) with autism risk.

View Article and Find Full Text PDF

Dietary intake can be an important exposure route to per- and polyfluoroalkyl substances (PFASs). Little is known about the bioaccumulation of emerging per- and polyfluoroalkyl ether acids (PFEAs) in garden produce from PFAS-impacted communities and the associated dietary exposure risk. In this study, 53 produce samples were collected from five residential gardens near a fluorochemical manufacturer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!