Purpose: Automated segmentation software in optical coherence tomography (OCT) devices is usually developed for and primarily tested on common diseases. Therefore segmentation accuracy of automated software can be limited in eyes with rare pathologies.

Methods: We sought to develop a semisupervised deep learning segmentation model that segments 10 retinal layers and four retinal features in eyes with Macular Telangiectasia Type II (MacTel) using a small labeled dataset by leveraging unlabeled images. We compared our model against popular supervised and semisupervised models, as well as conducted ablation studies on the model itself.

Results: Our model significantly outperformed all other models in terms of intersection over union on the 10 retinal layers and two retinal features in the test dataset. For the remaining two features, the pre-retinal space above the internal limiting membrane and the background below the retinal pigment epithelium, all of the models performed similarly. Furthermore, we showed that using more unlabeled images improved the performance of our semisupervised model.

Conclusions: Our model improves segmentation performance over supervised models by leveraging unlabeled data. This approach has the potential to improve segmentation performance for other diseases, where labeled data is limited but unlabeled data abundant.

Translational Relevance: Improving automated segmentation of MacTel pathology on OCT imaging by leveraging unlabeled data may enable more accurate assessment of disease progression, and this approach may be useful for improving feature identification and location on OCT in other rare diseases as well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542501PMC
http://dx.doi.org/10.1167/tvst.13.11.2DOI Listing

Publication Analysis

Top Keywords

leveraging unlabeled
12
unlabeled data
12
segmentation mactel
8
automated segmentation
8
retinal layers
8
layers retinal
8
retinal features
8
unlabeled images
8
segmentation performance
8
segmentation
7

Similar Publications

Semi-supervised medical image segmentation via weak-to-strong perturbation consistency and edge-aware contrastive representation.

Med Image Anal

January 2025

School of Computer Science and Technology, Harbin Institute of Technology at Shenzhen, Shenzhen, 518055, China; National Key Laboratory of Smart Farm Technologies and Systems, Harbin, 150001, China. Electronic address:

Despite that supervised learning has demonstrated impressive accuracy in medical image segmentation, its reliance on large labeled datasets poses a challenge due to the effort and expertise required for data acquisition. Semi-supervised learning has emerged as a potential solution. However, it tends to yield satisfactory segmentation performance in the central region of the foreground, but struggles in the edge region.

View Article and Find Full Text PDF

Unsupervised Domain Adaptation for Object Detection (UDA-OD) aims to adapt a model trained on a labeled source domain to an unlabeled target domain, addressing challenges posed by domain shifts. However, existing methods often face significant challenges, particularly in detecting small objects and over-relying on classification confidence for pseudo-label selection, which often leads to inaccurate bounding box localization. To address these issues, we propose a novel UDA-OD framework that leverages scale consistency (SC) and Temporal Ensemble Pseudo-Label Selection (TEPLS) to enhance cross-domain robustness and detection performance.

View Article and Find Full Text PDF

Graph representation learning has been leveraged to identify cancer genes from biological networks. However, its applicability is limited by insufficient interpretability and generalizability under integrative network analysis. Here we report the development of an interpretable and generalizable transformer-based model that accurately predicts cancer genes by leveraging graph representation learning and the integration of multi-omics data with the topologies of homogeneous and heterogeneous networks of biological interactions.

View Article and Find Full Text PDF

Gradual Domain Adaptation via Normalizing Flows.

Neural Comput

January 2025

Department of Advanced Data Science, Institute of Statistical Mathematics, Tachikawa, Tokyo 190-8562, Japan

Standard domain adaptation methods do not work well when a large gap exists between the source and target domains. Gradual domain adaptation is one of the approaches used to address the problem. It involves leveraging the intermediate domain, which gradually shifts from the source domain to the target domain.

View Article and Find Full Text PDF

Clinical decision-making is driven by multimodal data, including clinical notes and pathological characteristics. Artificial intelligence approaches that can effectively integrate multimodal data hold significant promise in advancing clinical care. However, the scarcity of well-annotated multimodal datasets in clinical settings has hindered the development of useful models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!