On the design of cell membrane-coated nanoparticles to treat inflammatory conditions.

Nanoscale Horiz

LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.

Published: December 2024

Biomimetic-based drug delivery systems (DDS) attempt to recreate the complex interactions that occur naturally between cells. Cell membrane-coated nanoparticles (CMCNPs) have been one of the main strategies in this area to prevent opsonization and clearance. Moreover, coating nanoparticles with cell membranes allows them to acquire functions and properties inherent to the mother cells. In particular, cells from bloodstream show to have specific advantages depending on the cell type to be used for that application, specifically in cases of chronic inflammation. Thus, this review focuses on the biomimetic strategies that use membranes from blood cells to target and treat inflammatory conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nh00457dDOI Listing

Publication Analysis

Top Keywords

cell membrane-coated
8
membrane-coated nanoparticles
8
treat inflammatory
8
inflammatory conditions
8
design cell
4
nanoparticles treat
4
conditions biomimetic-based
4
biomimetic-based drug
4
drug delivery
4
delivery systems
4

Similar Publications

Albumin-Energized NIR-II Cyanine Dye for Fluorescence/Photoacoustic/Photothermal Multi-Modality Imaging-Guided Tumor Homologous Targeting Photothermal Therapy.

J Med Chem

January 2025

Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.

Endowing cyanine dyes with hydrophilicity, long blood circulation, tumor targeting, and robust therapeutic efficacy in the second near-infrared (NIR-II) window is challenging for cancer treatment. Herein, we develop cancer cell membrane-coated albumin-NIR-II cyanine dye assemblies, denoted as LZ-1105@HAm, to optimize the photophysical properties of cyanine dyes in aqueous solution for NIR-II fluorescence (FL)/photoacoustic (PA)/photothermal (PT) multimodality imaging-guided tumor homologous targeting photothermal therapy. LZ-1105@HAm exhibits good hydrophilicity, extends the half-life of blood circulation from 0.

View Article and Find Full Text PDF

Characterized by a cascade of profound changes in nucleus pulposus (NP) cells, extracellular matrix (ECM), and biomechanics, intervertebral disc degeneration is a common multifactorial condition that may lead to various degenerative lumbar disorders. Therapeutic strategies targeting a single factor have shown limited efficacy in treating disc degeneration, and approaches that address multiple pathological ingredients are barely reported. In this study, engineered cell membrane-encapsulated keratin nanoparticles are developed to simultaneously alleviate NP cell senescence and promote ECM remodeling.

View Article and Find Full Text PDF

The therapeutic effect of immune checkpoint inhibitors (ICIs) in triple-negative breast cancer (TNBC) is unsatisfactory. The immune "cold" microenvironment caused by tumor-associated fibroblasts (TAFs) has an adverse effect on the antitumor response. Therefore, in this study, mixed cell membrane-coated porous magnetic nanoparticles (PMNPs) were constructed to deliver salvianolic acid B (SAB) to induce an antitumor immune response, facilitating the transition from a "cold" to a "hot" tumor and ultimately enhancing the therapeutic efficacy of immune checkpoint inhibitors.

View Article and Find Full Text PDF

Melanoma extracellular vesicles membrane coated nanoparticles as targeted delivery carriers for tumor and lungs.

Mater Today Bio

February 2025

Department of Biochemistry and Molecular Pharmacology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy.

Targeting is the most challenging problem to solve for drug delivery systems. Despite the use of targeting units such as antibodies, peptides and proteins to increase their penetration in tumors the amount of therapeutics that reach the target is very small, even with the use of nanoparticles (NPs). Nature has solved the selectivity problem using a combination of proteins and lipids that are exposed on the cell membranes and are able to recognize specific tissues as demonstrated by cancer metastasis.

View Article and Find Full Text PDF

Background: A number of immunotherapeutic approaches have been developed and are entering the clinic. Bispecific antibodies (BsAbs) are one of these modalities and induce robust efficacy by endogenous T cells in several hematological malignancies. However, most of the treated patients experience only a temporary benefit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!