A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Based on T.E.S.T toxicity prediction and machine learning to forecast toxicity dynamics in the photocatalytic degradation of tetracycline. | LitMetric

The integration of photocatalysis and biological treatment provides an effective strategy for controlling antibiotic contamination, which requires precise monitoring of toxicity changes during the photocatalytic process. In this study, nanoscale TiO (P25) was employed to degrade tetracycline (TC) under full-spectrum irradiation, with O identified as a crucial reactant for the generation reactive oxygen species (ROS). The toxicity simulation results of the degradation intermediates were closely correlated with the predictions of T.E.S.T software. By analyzing the content of intermediates under different experimental conditions, we developed a machine learning model utilizing the random forest algorithm with a correlation coefficient of = 0.878 and a mean absolute error of MAE = 0.02. The model can track the changes of photocatalytic intermediates, in combination with toxicity simulation, which facilitates the prediction of toxicity at different degradation stages, thus allowing selection of the optimal timing of biological treatment interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp04037fDOI Listing

Publication Analysis

Top Keywords

machine learning
8
biological treatment
8
changes photocatalytic
8
toxicity simulation
8
toxicity
6
based test
4
test toxicity
4
toxicity prediction
4
prediction machine
4
learning forecast
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!