A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A different approach to identifying thermal parameters for invasive species. | LitMetric

A different approach to identifying thermal parameters for invasive species.

J Econ Entomol

USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA 98951, USA.

Published: November 2024

The brown marmorated stinkbug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), is a polyphagous invasive insect found in the eastern United States in 1998 but became a major agricultural pest in 2010. Environmental temperatures regulate the location of invasive species establishment in new locations. To determine those areas where an invasive species might establish it is essential to understand the metabolic response of all life stages to temperature. Differential scanning calorimetry is a useful tool to monitor living organisms' metabolism at different temperatures, providing vital information related to the ability of the species to survive in new environments. The information obtained from isothermal and scanning calorimetric experiments on all the life stages of H. halys indicates that the third instar is the most thermoresponsive stage and eggs and fifth instar are the least thermoresponsive, whereas the third instars exhibit a broad range of thermoresponsiveness as compared to all other developmental stages. The recorded values for lower, optimal, and upper developmental temperatures in this study were similar to those reported by other researchers using laboratory and field data to develop degree-day models. This method can help in the rapid development of degree day models to improve and synchronize control efforts for newly invasive species.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jee/toae135DOI Listing

Publication Analysis

Top Keywords

invasive species
16
life stages
8
instar thermoresponsive
8
invasive
5
species
5
approach identifying
4
identifying thermal
4
thermal parameters
4
parameters invasive
4
species brown
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!