DeLTa-seq is a high-throughput RNA-seq library preparation method that enables quantification of the expression of hundreds of arbitrarily selected genes without RNA purification. This method involves direct reverse transcription using rice leaf lysate and targeted RNA-seq library preparation. DeLTa-seq enables the precise quantification of gene expression with a small number of sequencing reads. This chapter provides detailed information on the design of gene-specific primers, sampling of rice leaves, preparation of lysates, direct-lysate reverse transcription, targeted RNA-seq library preparation, and bioinformatic analysis of DeLTa-seq data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-4204-7_12 | DOI Listing |
Theranostics
January 2025
Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
Proteolysis Targeting Chimeras (PROTACs) are bifunctional compounds that have been extensively studied for their role in targeted protein degradation (TPD). The capacity to degrade validated or undruggable targets provides PROTACs with significant potency in cancer therapy. However, the clinical application of PROTACs is limited by their poor potency and unfavorable pharmacokinetic properties.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Medical College of Qinghai University, Xining, China.
Background: Chromosome segregation 1 like () overexpression can promote proliferation and migration in cancer. In previous study, we found that CSE1L expression was higher in gastric cancer (GC) tissues compared to normal tissues. However, the biological function and molecular mechanism of CSE1L in GC remains unclear.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Background: Glioblastoma multiforme (GBM) is a common and highly aggressive brain tumor with a poor prognosis. However, the prognostic value of ferroptosis-related genes (FRGs) and their classification remains insufficiently studied.
Objective: This study aims to explore the significance of ferroptosis classification and its risk model in GBM using multi-omics approaches and to evaluate its potential in prognostic assessment.
BioData Min
January 2025
The Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90069, USA.
Background: With recent advances in single cell technology, high-throughput methods provide unique insight into disease mechanisms and more importantly, cell type origin. Here, we used multi-omics data to understand how genetic variants from genome-wide association studies influence development of disease. We show in principle how to use genetic algorithms with normal, matching pairs of single-nucleus RNA- and ATAC-seq, genome annotations, and protein-protein interaction data to describe the genes and cell types collectively and their contribution to increased risk.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
Advancements in bioinformatic tools and breakthroughs in high throughput RNA sequencing have unveiled the potential role of non-coding RNAs in influencing the overall expression of disease-responsive genes. Owing to the increasing need to develop resilient crop varieties against environmental constraints, our study explores the functional relationship of various non-coding RNAs in wheat during leaf rust pathogenesis. MicroRNAs (miRNAs) and circular RNAs (circRNAs) were retrieved from SAGE and RNA-Seq libraries, respectively, in the susceptible (HD2329) and resistant (HD2329 + Lr28) wheat Near-Isogenic Lines (NILs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!