Enhanced UV-Visible Absorption of Silicon Solar Cells Utilizing YAG:Ce and BaSiOCl: Eu Based on Spectral Down-Shifting.

J Fluoresc

Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.

Published: November 2024

Spectral down-shifting materials can convert the less utilized photons in the solar spectrum into the portion that solar cells can fully utilize, providing an effective means of improving the efficiency of solar cells. In this work, the spectral down-shifting material BaSiOCl: Eu (BSOC) was prepared by a high-temperature solid-state method. The fluorescence spectra indicate that the absorption spectrum of BSOC can cover the range of 210-500 nm, and has a strong emission spectrum with a broadband of 410-650 nm. The wider spectral characteristics make it convenient to utilize the solar spectrum efficiently. Additionally, the BSOC phosphors precisely compensate for the weak absorption of YAG: Ce (YAG) phosphors below 425 nm. The YAG and BSOC phosphors were mixed, and the hybrid material has a wider absorption range (200-540 nm) compared to YAG or BSOC alone. Finally, the electrical properties of the packaged cells were tested, and the results showed that the packaged cells with hybrid materials had higher short-circuit current density and photoelectric conversion efficiency compared to YAG or BSOC alone. In addition, the efficiency of the packaged cells with hybrid materials increased from 19.54 to 20.08% compared with the bare cells, a relative increase of 2.760%.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-024-04019-7DOI Listing

Publication Analysis

Top Keywords

solar cells
12
spectral down-shifting
12
yag bsoc
12
packaged cells
12
solar spectrum
8
bsoc phosphors
8
compared yag
8
cells hybrid
8
hybrid materials
8
cells
7

Similar Publications

We study the influence of electrical biasing on the modification of the chemical composition and electrical performance of perovskite solar cells (PSCs) by coupling electrochemical impedance spectroscopy (EIS) and scanning transmission X-ray microscopy (STXM) techniques. EIS reveals the formation of charge accumulation at the interfaces and changes in the resistive and capacitive properties. STXM study on PSCs after applying a strong electric field for a long biasing time indicates the breakdown of methylammonium (MA) cation, promoting iodide ions to migrate and create defects at the interface.

View Article and Find Full Text PDF

Perovskite technologies has taken giant steps on its advances in only a decade time, from fundamental science to device engineering. The possibility to exploit this technology on a thin flexible substrate gives an unbeatable power to weight ratio compares to similar photovoltaic systems, opening new possibilities and new integration concepts, going from building integrated and applied photovoltaics (BIPV, BAPV) to internet of things (IoT). In this perspective, the recent progress of perovskite solar technologies on flexible substrates are summarized, focusing on the challenges that researchers face upon using flexible substrates.

View Article and Find Full Text PDF

The behavior of triple-cation mixed halide perovskite solar cells (PSCs) under ultrashort laser pulse irradiation at varying fluences is investigated, with a focus on local heating effects observed in femtosecond transient absorption (TA) studies. The carrier cooling time constant is found to increase from 230 fs at 2 µJ cm⁻ to 1.3 ps at 2 mJ cm⁻ while the charge population decay accelerates from tens of nanoseconds to the picosecond range within the same fluence range.

View Article and Find Full Text PDF

Water-dispersible core/shell CuInZnSe/ZnS (CIZSe/ZnS) quantum dots (QDs) were efficiently synthesized under microwave irradiation using -acetylcysteine (NAC) and sodium citrate as capping agents. The photoluminescence (PL) emission of CIZSe/ZnS QDs can be tuned from 593 to 733 nm with varying the Zn : Cu molar ratio in the CIZSe core. CIZSe/ZnS QDs prepared with a Zn : Cu ratio of 0.

View Article and Find Full Text PDF

The Effect of Antisolvent Treatment on the Growth of 2D/3D Tin Perovskite Films for Solar Cells.

ACS Energy Lett

January 2025

Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.

Antisolvent treatment is used in the fabrication of perovskite films to control grain growth during spin coating. We study widely incorporated aromatic hydrocarbons and aprotic ethers, discussing the origin of their performance differences in 2D/3D Sn perovskite (PEAFASnI) solar cells. Among the antisolvents that we screen, diisopropyl ether yields the highest power conversion efficiency in solar cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!