Context: The propargyl radical plays a critical role in various chemical processes, including hydrocarbon combustion, flame synthesis, and interstellar chemistry. Its unique stability arises from the delocalization of π-electrons, allowing it to participate in a wide range of reactions despite being a radical. The self-reaction of propargyl radicals is a fundamental step in synthesizing polycyclic aromatic hydrocarbons. In this work, therefore, a computational study into the CH + CH potential energy surface has been carefully characterized. The calculated results indicate that the reaction can occur by H-abstraction or addition of two propargyl radicals together. The H-abstraction mechanism can create the products P3 (HCCC + HCCCH) and P4 (HCCCH + HCCCH) but the energy barriers of the two H-abstraction channels are very high (from 12 to 22 kcal/mol). In contrast, the addition mechanism of two propargyl radicals forming the intermediates (I, I, I) and the bimolecular products (P1, P2, P7, P11, P12) are dominant. Among the bimolecular products, the P11 (CH + H) product is the most energetically favorable, and the channel leading to this product is also the most preferred path compared to all other paths throughout the PES. The calculated enthalpy changes of various reaction paths in this study are in good agreement with the available literature data, indicating that the CCSD(T) method is suitable for the title reaction. The overall rate constant of the reaction depends on both temperature and pressure, reducing with temperature but rising with pressure. The calculated results agree closely with the available experimental values and previous calculated data. Thus, it can be affirmed that in addition to the CASPT2 method as applied in the study of Georgievskii et al. (Phys. Chem. Chem. Phys., 2007, 9, 4259-4268), the CCSD(T) method is also very good for the self-reaction of two propargyl radicals.
Methods: The M06-2X and CCSD(T) methods with the aug-cc-pVTZ basis set were used to optimize and calculate single-point energies for all species of the reaction. The bimolecular rate constants of the dominant reaction paths were predicted in the temperature and pressure ranges of 300-1800 K and 0 - 76,000 Torr, respectively, using the VTST and RRKM models with Eckart tunneling correction for the H-shift steps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-024-06191-w | DOI Listing |
Talanta
March 2025
National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, 430070, China. Electronic address:
Herein, an ultrasensitive electrochemical biosensor is constructed to detect mecA gene by utilizing electrochemically controlled atom transfer radical polymerization (eATRP) triggered by copper nanoflowers enriched on DNA polymers. Firstly, specific capture and enrichment of mecA gene is achieved by using magnetic separation system, effectively weakening the interference of the complex matrix. Next, enzyme-free hybridization chain reaction is triggered in the presence of mecA gene to form long DNA polymers containing numerous active sites for subsequent binding to streptavidin-copper hybrid nanoflowers (SA@Cu HNFs).
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2024
Center for Genomic Science Innovation, University of Wisconsin Madison, Madison, Wisconsin 53706, United States.
Protein footprinting is a useful method for studying protein higher order structure and conformational changes induced by interactions with various ligands via addition of covalent modifications onto the protein. Compared to other methods that provide single amino acid-level structural resolution, such as cryo-EM, X-ray diffraction, and NMR, mass spectrometry (MS)-based methods can be advantageous as they require lower protein amounts and purity. As with other MS-based proteomic methods, such as post-translational modification analysis, enrichment techniques have proven necessary for both optimal sensitivity and sequence coverage when analyzing highly complex proteomes.
View Article and Find Full Text PDFAcc Chem Res
December 2024
Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
J Mol Model
November 2024
School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Vietnam.
Context: The propargyl radical plays a critical role in various chemical processes, including hydrocarbon combustion, flame synthesis, and interstellar chemistry. Its unique stability arises from the delocalization of π-electrons, allowing it to participate in a wide range of reactions despite being a radical. The self-reaction of propargyl radicals is a fundamental step in synthesizing polycyclic aromatic hydrocarbons.
View Article and Find Full Text PDFPharmaceuticals (Basel)
October 2024
Engineering Laboratory of Organometallic, Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco.
: This research centers on the development and spectroscopic characterization of new quinazolin-4(3H)-one-isoxazole derivatives (). The aim was to investigate the regioselectivity of the 1,3-dipolar cycloaddition involving arylnitriloxides and N-propargylquinazolin-4(3H)-one, and to assess the antioxidant properties of the synthesized compounds. The synthetic approach started with the alkylation of quinazolin-4(3H)-one using propargyl bromide, followed by a 1,3-dipolar cycloaddition reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!