Human activities have significant influence on soil erosion in karst areas. The spatial and temporal evolution of soil erosion in Guizhou Province was evaluated using the Revised Universal Soil Loss Equation (RUSLE), which revealed an increasing trend in the initial data analysis for the soil erosion modulus. To disclose the impact of human activities on regional soil erosion, the soil erosion in 2000, 2010, and 2020 was analyzed. The results show the following: (1) The average values of the soil erosion modulus in the study area for 2000, 2010, and 2020 were 4.479, 4.945, and 5.806 t·hm·a, respectively; when considering human activities without the influence of rainfall erosivity, these values were 4.679, 4.963, and 4.799 t·hm·a. The influence of human activities on soil erosion is gradually becoming a positive force. (2) According to the Spearman regression analysis, the top four factors related to soil erosion in 2000 and 2010 were soil loss risk (E, 0.721 and 0.737), anti-erosion factors (Pr, - 0.236 and - 0.221), rock exposure rate (0.222 and 0.279), and altitude (0.210 and 0.195). In 2020, the top four factors were Pr (0.725), land surface temperature (LST, 0.268), NDVI (- 0.232), and E (0.186). In the first two stages, soil erosion is closely related to natural factors, while in 2020, soil erosion is more closely related to human activities. (3) The geographically weighted regression (GWR) showed the highest range of regression coefficients for Pr (150), followed by E and NDVI (25), rock exposure rate (10), and land surface temperature (LST) (1.5). The rainfall erosivity is increasing annually as a consequence of global climate change. This rise in rainfall erosivity has resulted in a corresponding increase in soil erosion in the study area, which obscures the positive impact of human activities in the reduction of soil erosion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-024-13293-8 | DOI Listing |
Sensors (Basel)
January 2025
Acropolis Restoration Service, Hellenic Ministry of Culture, 10555 Athens, Greece.
This study focuses on the geotechnical evaluation of the foundation conditions of the Agrippa Monument at the Acropolis of Athens, aiming to propose interventions to improve stability and reduce associated risks. The assessment reveals highly uneven foundation conditions beneath the monument. A thorough collection of bibliographic references and geotechnical surveys was conducted, classifying geomaterials into engineering-geological units and evaluating critical parameters for geotechnical design.
View Article and Find Full Text PDFPlants (Basel)
December 2024
The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, China.
The relative impacts of biochemical and stomatal limitations on photosynthesis during photosynthetic induction have been well studied for diverse plants under ambient CO concentration (). However, a knowledge gap remains regarding how the various photosynthetic components limit duction efficiency under elevated CO. In this study, we experimentally investigated the influence of elevated CO (from 400 to 800 μmol mol) on photosynthetic induction dynamics and its associated limitation components in two broadleaved tree species, and .
View Article and Find Full Text PDFSci Rep
January 2025
School of Emergency and Management, Changchun Institute of Technology, No. 3066 Tongzhi Street, Changchun, 130021, Jilin, China.
Improving water retention, erosion resistance and nutrients in desert areas is essential for ecological sustainability. This study evaluated the effects of biochar, polyethylene oxide (PEO), and seaweed fertilizer on the properties of desert sandy soil, focusing on water retention, erosion resistance, and soil nutrients. The sandy soil used in the study was taken from the Tengger Desert in Gansu, China, and an orthogonal experimental design was used to select three different proportions of biochar, PEO, and seaweed fertilizer.
View Article and Find Full Text PDFHealth Phys
January 2025
Oregon State University, Corvallis, OR.
A former uranium recovery facility located in northwestern New Mexico currently serves as a uranium mill tailings site undergoing reclamation and decommissioning. High velocity winds are common in the area, causing soil erosion via aeolian processes. Strong winds may carry soil for several kilometers, which is redeposited downwind.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA.
Wetlands in the Qinghai-Tibet Plateau are a unique and fragile ecosystem undergoing rapid changes. We show two unique patterns of mercury (Hg) accumulation in wetland sediments. One is the 'surface peak' in monsoon-controlled regions and the other is the 'subsurface peak' in westerly-controlled regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!