Inflammation contributes to the pathophysiology of diabetes. Identifying signaling pathways involved in pancreatic β-cell failure and identity loss can give insight into novel potential treatment strategies to prevent the loss of functional β-cell mass in diabetes. It is reported earlier that the immunosuppressive drug tacrolimus has a detrimental effect on human β-cell identity and function by activating bone morphogenetic protein (BMP) signaling. Here it is hypothesized that enhanced BMP signaling plays a role in inflammation-induced β-cell failure. Single-cell transcriptomics analyses of primary human islets reveal that IL-1β+IFNγ and IFNα treatment activated BMP signaling in β-cells. These findings are validated by qPCR. Furthermore, enhanced BMP signaling with recombinant BMP2 or 4 triggers a reduced expression of key β-cell maturity genes, associated with increased ER stress, and impaired β-cell function. Altogether, these results indicate that inflammation-activated BMP signaling is detrimental to pancreatic β-cells and that BMP-signaling can be a target to preserve β-cell identity and function in a pro-inflammatory environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adbi.202400470 | DOI Listing |
Stem Cells Int
December 2024
Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China.
A proper source of stem cells is key to muscle injury repair. Dental pulp stem cells (DPSCs) are an ideal source for the treatment of muscle injuries due to their high proliferative and differentiation capacities. However, the current myogenic induction efficiency of human DPSCs hinders their use in muscle regeneration due to the unknown induction mechanism.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China. Electronic address:
Adhesive arachnoiditis (AA) is a rare form of chronic degenerative pathology associated with persistent inflammation in the arachnoid matter of the spinal cord. Despite the existing knowledge, the detailed pathological mechanisms underlying AA are not fully understood. This study aimed to elucidate through comprehensive single nuclei RNA sequencing (snRNA-seq) to delineate the transcriptomic landscape of AA.
View Article and Find Full Text PDFNat Commun
January 2025
Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
Intestinal epithelial cells are segregated into proliferative crypts and differentiated regions. This organization relies on specific signals, including Wnt3a, which regulates cell proliferation within crypts, and Eph/Ephrin, which dictates cell positioning along the crypt-villus axis. However, studying how the spatial distributions of these signals influences crypt-villus organization is challenging both in vitro and in vivo.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
A balance between stem cell self-renewal and differentiation is required to maintain concurrent proliferation and cellular diversification in organoids; however, this has proven difficult in homogeneous cultures devoid of in vivo spatial niche gradients for adult stem cell-derived organoids. In this study, we leverage a combination of small molecule pathway modulators to enhance the stemness of organoid stem cells, thereby amplifying their differentiation potential and subsequently increasing cellular diversity within human intestinal organoids without the need for artificial spatial or temporal signaling gradients. Moreover, we demonstrate that this balance between self-renewal and differentiation can be effectively and reversibly shifted from secretory cell differentiation to the enterocyte lineage with enhanced proliferation using BET inhibitors, or unidirectional differentiation towards specific intestinal cell types by manipulating in vivo niche signals such as Wnt, Notch, and BMP.
View Article and Find Full Text PDFBone Res
January 2025
Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!